Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Fractal structure of gauge fields

Airton Deppman University of São Paulo Brazil

Grenac, Sept. 11, 2018

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

QGP: QCD and its applciations

History ana Universe

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Thermodynamical approach

 R. Hagedorn: thermodynamical approach to HEC exponential distributions of energy and momentum exponential hadron mass spectrum Hadron Resonance Gas models, conf,/deconf. phase-transition but disagrees from experimental data

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Renormalization of gauge fields

Yang-Mills theory is renormalizable: $\Gamma(p, m, g) = \lambda^{-D} \Gamma(p, \mu, \overline{g})^{\text{F. Dyson, PR 75 (1949) 1736}}$ M. Gell-Mann and F.E. Low, PR 95 (1954) 1300

Renormalization group equation:

n=0

 $\left[M\frac{\partial}{\partial M} + \beta_g \frac{\partial}{\partial \overline{g}} + \beta_\mu \frac{\partial}{\partial \mu} + d\right] \Gamma = 0 \qquad \text{Callan-Symanzik Equation}$

C.G. Callan Jr., PRD 2 (1970) 1541

K. Symanzik, Comm. Math. Phys. 18 (1970) 227

n=2 ____+ __(

Effective coupling constant \bar{g}

Effective mass μ

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Renormalization of gauge fields

Yang-Mills theory is renormalizable: $\Gamma(p, m, g) = \lambda^{-D} \Gamma(p, \mu, \overline{g})^{\text{F. Dyson, PR 75 (1949) 1736}}$ M. Gell-Mann and F.E. Low, PR 95 (1954) 1300

Renormalization group equation:

n=0

 $\left[M\frac{\partial}{\partial M} + \beta_g \frac{\partial}{\partial \bar{g}} + \beta_\mu \frac{\partial}{\partial \mu} + d\right] \Gamma = 0$

Callan-Symanzik Equation

C.G. Callan Jr., PRD 2 (1970) 1541

K. Symanzik, Comm. Math. Phys. 18 (1970) 227

Effective coupling constant \bar{g}

Effective mass μ

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Multiparticle production

Example of complex graphs in multiparticle production:

Too many complex graphs to be considred. Calculations limited to first leading orders or LQCD.

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Including fractal structure in YM fields

At any scale: ideal gas of particles with different masses.

$$Z = Tr < x|U(i\beta H, 0)|x >= \int Dx < x|e^{-\beta H}|x >$$

$$Z = \prod_i \int dm d^3 p < x_i|e^{-\beta H_i}|x_i >$$

$$Z = \prod_i \int dm \tilde{P}(m) d^3 p < x_{i,m}|e^{-\beta H_i}|x_{i,m} >$$
This partition function can be written as
$$Z = \prod_i \int dm \tilde{P}(m) d^3 p < x_{i,m}|e^{-\beta H_i}|x_{i,m} >$$
i and μ are the particle index and effective mass.

Therefore:
$$Z = \prod_i \int dm \tilde{P}(m) e^{-\beta \epsilon_i} d^3 p_i$$
, $\epsilon^2 = p^2 + m^2$.

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Including fractal structure in YM fields

$$Z=\prod_i\int dm ilde{P}(\mu) e^{-eta\epsilon_i} d^3p_i, \ \epsilon^2=p^2+\mu^2.$$

 $P(U)dU = \prod_{i} AkT\tilde{P}(\mu)e^{-\beta\epsilon_{i}}d\mu d^{3}\pi$

is the probability to find the system with energy between U and U+dU, $U=\sum_i \epsilon_i, \ \pi=p/(kT), \ \mu=m/(kT) \ .$

Parent parton is also a parton $ightarrow P(U) \propto ilde{P}(\mu)$.

Self-symmetry in gauge fields!

It can be show that $P(\mu)$ must be such that: $\begin{array}{l} D, PRD (2016) \\ P(\varepsilon) = A[1 + (q-1)\frac{\varepsilon}{k\tau}]^{-\frac{1}{q-1}} \\ \frac{\varepsilon}{kT} = \frac{\mu}{K}, \text{ with } K \text{ being the parton kinetic energy.} \end{array}$

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Non extensivity in gauge field theory

$$P(arepsilon) = A[1+(q-1)rac{arepsilon}{k au}]^{-rac{1}{q-1}}$$
 ad, prd (2016)

Tsallis q-exponential function \rightarrow Tsallis Statistics

 $\frac{\varepsilon}{kT} = \frac{\mu}{K}$, with K being the parton kinetic energy.

 $(q-1)=rac{2}{3N}(1u)$ and au=(q-1)NT

q and au are completely determined interms of the fractal structure.

Suggest that at each vertex, momentum and effective masses are determined by the same scaled distribution

$$ar{g}^2 = \prod_i ig[1+(q-1)rac{arepsilon_i}{k au}ig]^{-rac{1}{q-1}}$$

We can show that with this ansatz $\beta_{\overline{g}} \propto g^3$, same behavior as in pQCD

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Comparison with experiments

Extended Hagedorn theory to non extensive statistics: AD, Physica A 391 (2012) 6380

use of Tsallis factor:
$$P(\varepsilon) = A[1 + (q-1)\frac{\varepsilon}{k\tau}]^{-\frac{1}{q-1}}$$

L. Marques, E. Andrade-II, AD, PRD 87 (2013) 114022 L. Marques, J. Cleymans, AD, PRD 91 (2015) 054025

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Effective mass spectrum

We can show that to satisfy CS Equation the mass spectrum must be given by:

$$ho(m) =
ho_o \left[1 + (q-1)m/M
ight]^{1/(q-1)}$$

Such result was already obtained by extending Hagedorn's Self-Consistent Thermodynamics to the non extensive case.

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Effective mass spectrum and observed data

 $\rho(m) = \rho_o \left[1 + (q-1)m/M\right]^{1/(q-1)}$

Obtained in Non Extensive Self-Consistent Thermodynamics,

by a completely different approach AD, Phys. A 391 (2012) 6380

L. Marques, E. Andrade-II, AD, PRD 87 (2013) 114022

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Summary of theory results

Scale invariance of gauge theory leads to

fractal structure

fractal dimension in multiparticle production

Tsallis statistics

non extensive self-consistent thermodynamics

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Experimental verification

Scale invariance of gauge theory

leads to fractal structure

fractal dimension in multiparticle production

Tsallis statistics

non extensive self-consistent thermodynamics

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Experimental verification

Scale invariance of gauge theory

leads to fractal structure

fractal dimension in multiparticle production

Tsallis statistics

non extensive self-consistent thermodynamics

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

High energy collisions:

J. Cleymans; D.J. Worku, Phys. G Nucl. Part. Phys. 2012, 39, 025006 C.-Y. Wong; G. Wilk, G.; Tsallis, C. Phys. Rev. D 2015, 91, 11402 L. Marques, J. Cleymans, and AD, PRD 91 (2015) 054025

Applications

Hadron models:

P.H.G Cardoso; T.N. da Silva; AD; D.P. Menezes, EPJA 51 (2015) 155

Hadron mass spectrum:

L. Marques; E. Andrade-II; AD, Phys. Rev. D 2013, 87, 114022

Neutron stars:

D. P. Menezes, AD, E. Megias, and L. B. Castro, EPJA 51, (2015) 155

LQCD:

AD PG 41 (2014) 055108

Non extensive statistcs:

E. Megias, AD, D.P. Menezes, Physica A 421 (2015) 15 AD, Physica A 391 (2012) 6380 AD, E. Megias, D.P. Menezes, T. Frederico, (2018) to be published in Entropy

Airton Deppman

Scales in YMtheory

Fractal structure of gauge fields

Fractal structure of gauge fields

Conclusions:

Scale invariance in gauge fields leads to: Self-consistency and fractal struture Recursive calculations at any order Non extensive statistics Reconciles Hagedorn's theory with QCD Agreement with experimental data

Thank you