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Abstract

This work presents an analysis of fractional derivatives and fractal derivatives, discussing their differences and similarities. The

fractal derivative is closely connected to Haussdorff’s concepts of fractional dimension geometry. The paper distinguishes between

the derivative of a function on a fractal domain and the derivative of a fractal function, where the image is a fractal space. Different

continuous approximations for the fractal derivative are discussed, and it is shown that the q-calculus derivative is a continuous

approximation of the fractal derivative of a fractal function. A similar version can be obtained for the derivative of a function on a

fractal space. Caputo’s derivative is also proportional to a continuous approximation of the fractal derivative, and the corresponding

approximation of the derivative of a fractional function leads to a Caputo-like derivative. This work has implications for studies of

fractional differential equations, anomalous diffusion, information and epidemic spread in fractal systems, and fractal geometry.

1. Introduction

Fractional differential equations have been used to describe

the behavior of complex systems. The growing interest in this

mathematical tool imposes the necessity of urgent analysis of

its fundamentals. The widespread use of fractional differential

equations in fluid dynamics, finance, and other complex sys-

tems has led to intense investigation of the properties of frac-

tional derivatives and their geometrical and physical meaning.

Fractional derivatives are often associated with fractal geome-

try, but the connections between fractional derivatives and frac-

tal derivatives have not been clarified so far. Fractional deriva-

tives have been used in many applications [1, 2], and advancing

our understanding of their geometrical meaning and their rela-

tions with fractals is necessary. The q-calculus has been fre-

quently applied to describe the statistical properties of fractal

systems [3, 4]. However, the relationship between q-calculus

and fractal derivatives has not been fully understood yet.

This work reviews the fundamentals of fractal derivatives and

establishes their connections with fractional derivatives and q-

calculus. The generalization of standard calculus to include

fractional-order derivatives and integrals is an exciting field of

research, and many works have been done in this area. Different

proposals for fractional generalization are available, and appli-

cations of fractional derivatives have been used in various fields.
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Fractional differential equations are frequently used to describe

the behavior of complex systems. In Refs. [5, 6], the authors

analyzed different forms of fractional derivatives and discussed

their properties. Caputo’s derivative is among the most com-

monly used and is defined by

DνCh(x) =
1

Γ(1 − ν)

∫ x

x−δ

(x − t)−ν
dh

dt
dt , (1)

which is a particular case of the Riemann-Liouville fractional

derivative [7].

Haussdorff established the fundamental aspects of spaces

with fractional dimension, and an introduction to the subject

can be found in [8]. One of the important quantities associ-

ated with fractal spaces is the Haussdorff measure, denoted by

H s(F). Its definition is based on the measure H s
δ
(F), and is

given by

H s(F) = lim
δ→0
H s
δ (F) , (2)

where the measure depends on a δ-cover of the Borel subset

F ⊆ R
n. The space F will be referred to as a fractal space, and

its Hausdorff dimension is denoted by α and defined as

α = inf{s ≥ 0 : H s(F) = 0} = sup{s : H s(F) = ∞} . (3)

If 0 < α < ∞, the Haussdorff measure of the δα-cover

is called the mass distribution, denoted by γα(F,a,b)[9, 10],

which will be discussed below. Fractal derivatives and frac-

tional derivatives are not the same concept [11], and the non-

locality is a prominent aspect of the fractal derivative. For a
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comprehensive review on the subject and its applications, see

Ref. [12]. The Parvate-Gangal derivative is defined for func-

tions on a fractal domain. This work shows that extending the

same concepts to functions with a fractal image can provide

new insights into the role of fractal derivatives in the study of

complex systems.

The Tsallis statistics was proposed to describe the statistical

properties of fractal systems. It introduces a non-additive en-

tropy that can be used to obtain, through the ordinary thermody-

namics formalism, the non-extensive thermodynamics [13, 14].

To deal with non-additivity, the q-calculus was proposed [15].

One important result of q-calculus is the q-derivative, which is

written as:

d̄ f

dx
= f q d f

dx
. (4)

The three different theoretical areas mentioned above have

been investigated independently, evolving in parallel. Despite

their many common aspects, the connections between them

have not been demonstrated so far [16]. This work aims

to establish connections between Caputo’s derivative and the

q-calculus with the continuous approximation of the fractal

derivative proposed by Parvate and Gangal.

2. Fractal derivatives

Lemma 1. If x = (x1, · · · , xn) ∈ R
n and f =

( f1(x), · · · , fm(x)) ∈ R
m is an m-dimensional vector field f :

R
n → R

m. Then, m ≤ n.

Proof: Suppose m > n, then ( f1(x), , fn(x)) forms a new set

of n independent variables which are functions of the n inde-

pendent variables of x. Then, fn+1(x) is not independent of the

functions in the set.

Definition 1. A vector field with dimension m = 1 is a function.

Lemma 2. If there is an inverse function f −1 ( f (x)) = x, then

m = n.

Proof: It follows immediately by applying Lemma 1.

Lemma 3. If f is a fractal vector field f : R
n → R

α, with

α ∈ R, then α ≤ n.

Proof: It follows immediately by applying Lemma 1.

Definition 2. A fractal vector field with dimension α ≤ 1 is a

fractal function.

Definition 3. An α-dimensional function is a fractal vector

field if α > 1 or a fractal function if α ≤ 1.

Definition 4. If γ(F,a,b) is the Haussdorffmass distribution for

a cover F, with a, b ∈ F, then the staircase function, S α
F,ao

, is

defined as

S αF,ao
=















γ(F,ao,x) for x > ao

γ(F,x,ao) for x < ao

. (5)

Lemma 4. The staircase function is a scalar.

Proof: The staircase function is proportional to the Hauss-

dorff mass function, which is the volume resulting from the

union of the δα(x) ∈ F, so it is a scalar.

Definition 5. If F is a δα-cover and f : F→ R, then the fractal

derivative of f (x) is

Dα
F,ao

f (xo) =















F limx→xo

f (x)− f (xo )

S α
F,ao

(x)−S α
F,ao

(xo)
x, xo ∈ F

0 otherwise
. (6)

Theorem 1. There is a fractal function of the inverse function,

and it is the inverse of the fractal derivative.

Proof: Consider that x, xo ∈ F. Suppose there exists a func-

tion g : R→ F such that g( f (x)) = x. Then,

Dα
F,ao

g
(

fxo

)

= F lim
x→xo

g( fx) − g( fxo
)

f (x) − f (xo)

f (x) − f (xo)

S α
F′ ,ao

(x) − S α
F′ ,ao

(xo)
= 1 ,

(7)

where the simplified notation fx = f (x) was adopted. It follows

that

F lim
x→xo

g( fx) − g( fxo
)

f (x) − f (xo)
= F lim

x→xo

S α
F′ ,ao

(x) − S α
F′ ,ao

(xo)

f (x) − f (xo)
. (8)

The fractal derivative of the inverse function can be applied

to any fractal function h : R → F. The staircase function, in

this case, is applied to the fractal image space of the function h.

The function f can be defined arbitrarily, with the constraint

that there is an inverse function f −1. One case of particular

interest is the identity function f (x) = x, then we have

[Dα
F,ϕ]
−1h(xo) = F lim

x→xo

S α
F,ϕ

[h(x)] − S α
F,ϕ

[h(xo)]

x − xo

, (9)

with ϕ = h(ao).

Observe that in this case, the image space and the domain

space of the function h are the same, i.e. h : F→ F.

Definition 6. The result obtained above can be generalized by

defining the fractal derivative of the inverse function or, equiv-

alently, the inverse of the fractal derivative, as

[Dα
F,ϕ]
−1h( fxo

) =















F limx→xo

S α
F,ϕ

[h(x)]−S α
F,ϕ

[h(xo)]

x−xo
x, xo ∈ F .

0 otherwise

(10)
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Corollary 1.1. The derivative of a fractal function is well-

defined only if the function is almost-always non-divergent in

the interval [a, b]. 1

Proof: According to Definition 4, the staircase function is

well-defined only if the mass distribution function can be de-

fined. The mass distribution is equal to the Haussdorffmeasure

when the Haussdorff dimension is 0 < α < ∞. This condition

is satisfied only if the function is almost-always non-divergent.

Theorem 2. If the function h(x) is almost-always continuous

and non-divergent in F, and h′(x) = [Dα
F,ϕ

]−1h(x), then the

Haussdorff dimension of h(x) and h′(x) are the same.

Proof: Let F be the δα-cover of the fractal function h(x),

and F
′ the δβ-cover of the inverse of fractal derivative. For any

δα[h(x)] ∈ F there is a δβ[h′(x)] ∈ F′, so β ≥ α. For δβ[h′(x)] ∈

F
′ there is a δα[h(x)] ∈ F, therefore α ≤ β. Hence, α = β.

Definition 7. We will denote the inverse of an α-dimensional

fractal function by Dα
F,ϕ

h(x), and we will refer to it as a fractal

derivative of an α-dimensional fractal function, or simply frac-

tal function, while the fractal derivative will be called fractal

derivative over a fractal space.

Definition 8. The partial derivative of a fractal function is

Dα
F,ϕ|ih( fx) =















F limxi→xo,i

S α
F,ϕ

[h(x)]−S α
F,ϕ

[h(xo)]

xi−xo,i
x, xo ∈ F ,

0 otherwise

(11)

where the index i indicates the component xi of the vector x.

Corollary 2.1. The dimension of Dα
F,ϕ
|i h( fx) is α ≤ 1.

Proof: It follows immediately from Lemma 1 and Theo-

rem 2.

Definition 9. The staircase function differential is defined by

dS αF,ao
(x) =















F limdx→0

[

S α
F,ao

(x + dx) − S α
F,ao

(x)
]

if x, x + dx ∈ F

0 otherwise

(12)

1Following the standard terminology in the field, we say that a function is

almost-always non-divergent if the set of points where it is divergent has null

Lebesgue measure.

Theorem 3. The staircase function differential can be approx-

imated by

dS αF,ao
(x) =

A(α)

α
dxα , (13)

where

A(α) := 2πα/2/Γ(α/2) . (14)

Proof: For any volume (δx)n ∈ R
n, its intersection with F

has a volume (δx)α. Consider the volume of an n-dimensional

sphere of radius x given by

V(x) =
A(n)

n
xn , (15)

where A(n) = 2πn/2/Γ(n/2) is the surface area term, with Γ(z)

being the Euler’s Gamma Function, and x =

√

x2
1
+ · · · + x2

n.

Then, the volume of a spherical shell of finite width δx is given

by

δV(x) =
A(n)

n
((x + δx)n − xn) . (16)

In the limit δx→ dx, where now dx is infinitesimal, it results

dV(x) = A(n)xn−1dx =
A(n)

n
dxn , (17)

where dxn := d(xn).

The intersection of δV(x) with F, which is denoted by δVα(x),

is

δVα(x) =
A(α)

α
((x + δx)α − xα) . (18)

In the limit δx→ dx, this leads to

δVα(x)→ dVα(x) = A(α)xα−1dx =
A(α)

α
dxα . (19)

On the other hand, dS α
F,ao

(x) is the volume of the intersection

between an infinitesimal volume dV ∈ Rn with F, so

dS αF,ao
(x) =

A(α)

α
dxα = A(α)xα−1dx . (20)

Definition 10. The continuous approximation of a fractal func-

tion is defined as a set of infinitesimal elements dx such that

Equation (20) is satisfied.

Theorem 4. The continuous approximation of the fractal

derivative of a function is

Dα
F,ϕh(x) =

A(α)

α

dhα

dx
= A(α)hα−1(x)

dh

dx
(x) . (21)
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Theorem 5. The continuous approximation of the fractal

derivative of a fractal function is

Dα
F,ϕh(x) =

A(α)

α

dhα

dx
= A(α)hα−1(x)

dh

dx
(x) . (22)

Proof: It follows directly from the definition of the fractal

derivative of a function and of the continuous approximation.

Theorem 6. Consider a fractal function f : R
n → F, where

F is a δα-cover, with n − 1 < α < n, for n > 1. It defines a

set of fractal functions { fi(xi)} with dimensions {αi} such that

α = α1 + · · · + αn.

Proof: Consider the fractal function fk(xk) =

f (a, · · · , xk, · · · , z), where a, · · · , z are constants. For any

interval I = [xk, xk + δxk], the intersection of I and F

is (δxk)αk , with αk < 1. For an αk−1-dimensional func-

tion hk−1(x1, · · · , xk−1, k, l, · · · , z) such that for any volume

(δx)k−1, the intersection with F is (δx)αk−1 , the function

hk(x1, · · · , xk−1, xk, l, · · · , z) has dimension (δx)αk−1δx = (δx)αk ,

where αk = αk−1 + αk. The theorem is proved by induction.

Definition 11. Consider a fractal function h with dimension

α < 1. The gradient of a fractal function is defined as

Dα
F,ϕh(xo) =

(

D
α1

F,ϕ
|1 h(xo), · · · ,D

αn

F,ϕ
|n h(xo)

)

, (23)

where α = α1 + · · · + αn.

Definition 12. For α > 1, the partial fractal derivative of the

function is

Dα
F,ϕ|ih(xo) =

(

D
α1

F,ϕ
|i h(xo), · · · ,D

αn

F,ϕ
|i h(xo)

)

, (24)

where α = α1 + · · · + αn.

Theorem 7. For a finite δ, the derivative of a fractal function

in the interval [x − δ, x] is

Dα[δ],ϕh(x) =
A(α)

α

∫ x

x−δ

hα−1(t)
dh

dt
dt . (25)

Proof: The derivative in the interval [x − δ, x] is

Dα[δ],ϕh(x) =

∫ x

x−δ

Dα
F,ϕh(t)dt . (26)

Using Definition 10, the theorem is proved.

Theorem 8. For a finite δ, the derivative of function in the in-

terval [x − δ, x] in a fractal space is

Dα[δ],ah(x) =
A(α)

α

∫ x

x−δ

[h(x) − h(t)]α−1 dh

dt
dt . (27)

Proof: The proof is done by applying the continuous ap-

proximation in Equation (20) to the derivative on fractal space

in Definition 5.

Observe that the α-dimensional sphere needs not to be cen-

tred at ϕ for the fractal derivative of a fractal function, or at a

for the derivative on a fractal space. The point x, where the

derivative is calculated, can be set as the centre of the sphere.

Definition 13. The continuous approximation of the derivative

of a function on a fractal space, based on α-dimensional sphere

centred at x is indicated by Dα
F,x

h(x).

Theorem 9. The continuous approximation of the derivative of

a function on a fractal space, Dα
F,x

h(x) in the interval [x − δ,x],

for finite δ, is given by

Dα
F,xh(x) =

A(α)

α

∫ x

x−δ

(x − t)1−α dh

dt
dt , (28)

which is proportional to Caputo’s derivative.

Proof: The local continuous approximation, considering

that the radius of the spherical shell is x− t, is determined from

Theorem 5 as

Dα
F,xh(t) = A(α)(x − t)1−α dh

dx
(t) . (29)

Using Definition 13, one has

Dα
F
h(x) =

∫ x

x−δ

Dα
F,xh(t)dt , (30)

leading to the proof of the Theorem.

Definition 14. The continuous approximation of the derivative

of a fractal function based on α-dimensional sphere centred at

x is indicated by Dα
F
h(x).

Theorem 10. The continuous approximation of the derivative

of a fractal function, Dα
F,ϕx

h(x) in the interval [x−δ, x], for finite

δ, is given by

Dα
F,ϕx

h(x) =
A(α)

α

∫ x

x−δ

(ϕx − h(t))α−1 dh

dt
dt , (31)

for t such that h(t) < ϕx = h(x).

Proof: The proof follows the same lines of the proof for The-

orem 9.

Corollary 10.1. The continuous approximation in Defini-

tion 10 is proportional to the limit of the continuous approxima-

tion in the range [x− δ, x] for δ→ 0 of the Caputo’s derivative.
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3. Discussion and Conclusion

The fractal derivative proposed by Parvate and Gangal, pre-

sented in Definition 5, is the closest concept to the Hausdorff

concept of fractional dimension spaces. Therefore, it is consid-

ered as the starting point for the analysis of fractal derivatives

and fractional derivatives here.

The existence of the inverse of the Parvate-Gangal derivative

is a natural consequence, i.e., a derivative of a function with a

fractal image space that is defined on a domain space, which

may or may not be fractal. This is proven in Theorem 1.

This work demonstrates that fractal functions with arbitrary

dimension α, such as a fractal vector field with fractal dimen-

sion α > 1, can be defined. However, the cases of most interest

are those with α ≤ 1, as they are physically relevant for the

present work.

The derivative of a fractal function on a fractal space al-

lows for a continuous approximation, as demonstrated in The-

orem 4. Additionally, a similar continuous approximation can

be obtained for the derivative of a function in a fractal space, as

shown in Theorem 5. This approximation is identical to the spe-

cial derivative used in Ref. [17] to derive the Plastino-Plastino

Equation, which is a generalization of the Fokker-Planck Equa-

tion for systems with non-local correlations.

The continuous approximation derivative is expressed in

terms of the standard derivative operator and can be associated

with the q-deformed calculus [15]. Unlike the fractal derivative,

the continuous approximation is a local derivative, and the non-

linear behavior of the continuous approximation is a remnant of

the non-local properties of the fractal derivative.

Non-locality can be explicitly introduced into the continu-

ous approximation by considering finite δ-covers. In the non-

local continuous approximation, the derivative is obtained by

integrating the local continuous derivative over a finite range δ.

This non-local continuous approximation is presented in Theo-

rem 9, and it is precisely the Caputo fractional derivative.

The derivative of a function in a fractal space and the deriva-

tive of a fractal function lead to different continuous approxima-

tions. The former can be associated with the Caputo fractional

derivative, as shown in Theorem 9, while the latter leads to a

Caputo-like derivative, as demonstrated in Theorem 10. Simi-

lar derivatives to Caputo’s derivative can also be found in [18].

The results of the present work evidence the relations be-

tween the fractal derivative and some of the most used fractional

derivatives. Comparing the result of Theorem 5 with Eq. (4), it

is clear that the local continuous approximation of the derivative

of a fractal function is equal to the q-derivative. Thus, for the

first time, the q-calculus derivative is shown to be a continuous

approximation to the fractal derivative.

A consequence of the relationship between the q-derivative

and the local continuous approximation of the derivative of a

fractal function (Theorem 5), and of the connection between

the derivative of a fractal function and the Caputo-like frac-

tional derivative (Theorem 10) is that the q-derivative and the

Caputo-like derivative are connected through a dislocation of

the centre of the α-dimensional sphere around which the non-

local continuous approximation is calculated. Hereby, one can

conclude that different forms of fractional derivatives can be ob-

tained from the Parvate-Gangal fractal derivative by consider-

ing the different possibilities of continuous approximation and

non-locality of the fractional derivative.

Other fractal derivatives can be explored along the same lines

as done here. The Riemann-Liouville derivative bears a close

relationship with Caputo’s derivative [19] and it is interesting to

observe the similarities between the fractal derivative proposed

in Refs. [20, 21] and the continuous approximations studied in

the present work. The fractional derivative used in Ref [22]

is equal to the local continuous approximation of the fractal

derivative of a function in a fractal space obtained in the present

work. Ref [23] studied this fractional derivative and its relation-

ship with the q-derivative. Establishing a clear connection be-

tween the Parvate-Gangal fractal derivative and Caputo’s frac-

tional derivative, this work opens the possibility for a deeper un-

derstanding of the use of fractional differential equations, which

is so common in many different areas. On this respect, let us re-

mark that fractal and fractional differential equations have been

used in applications as dynamic of the system in porous or het-

erogeneous media [24, 25, 26], diffusive flow [27, 28, 29, 30],

solitons [31], control of complex systems [32], epidemic pro-

cess [33] and many others. The consequences of the present

study for these physical systems deserve further investigation

in the future.
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