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Abstract: The present paper reports on the methods of the systematic analysis of the high-energy
collision distributions—in particular, those adopted by Jean Cleymans. The analysis of data on
high-energy collisions, using non-extensive statistics, represents an important part of Jean Cleymans
scientific activity in the last decade. The methods of analysis, developed and employed by Cleymans,
are discussed and compared with other similar methods. As an example, analyses of a set of the data
of proton-proton collisions at the center-of-mass energies,

√
s = 0.9 and 7 TeV, are provided applying

different methods and the results obtained are discussed. This line of research has the potential to
enlarge our understanding of strongly interacting systems and to be continued in the future.

Keywords: non-extensive statistics; high-energy collisions; multiparticle production; transversal
momentum distribution

1. Introduction

One of the most evident features of high-energy collision (HEC) experimental data
is the observation of the q-exponential distributions of the energy and momentum of the
created particles. The experimental evidence motivated many studies on the use of Tsallis
statistics in the multiparticle production process [1]. The role played by Jean Cleymans
in the efforts to clarify the non-extensive aspects of the HEC can hardly be overestimated.
He was a leading researcher on the Hadron Resonance Gas model [2,3] approach to the
high-energy phenomena, and soon assumed a fundamental role in the investigations of the
non-extensive generalization of the model using the Tsallis statistics [4].

One of Cleymans’ best-known contributions to the study of the non-extensive distri-
butions presents the formula for the distribution, derived from the non-additive entropy by
using the thermodynamical relations [5]. With this formula, Cleymans performed a series of
studies with several collaborators, developing systematic analyses of the experimental data
and finding important patterns in the behavior of the parameters of the formula [6–9]. The
investigations on the physical meaning of the non-extensive statistics involved systematic
research for different energies and different particle multiplicities [7,10,11]. Cleymans was
also involved in predictions of the outcomes for future experiments; the latter were largely
confirmed by the experimental data.

One fundamental contribution to the investigation of the hadronization of the quark–
gluon plasma was the theoretical determination of the critical line for the confined–deconfined
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regimes of the hadronic matter [12]. This study was subsequently generalized to include
the non-extensive statistics [13]. With this work, Cleymans opened the opportunity to
apply the knowledge, gathered in HEC, to other fields, such as neutron–star modeling.
This illustrates the importance and the reach of Jean Cleymans’ work. In one of his last
papers [6], Cleymans and his collaborators present an accurate analysis of the non-extensive
distributions for a wide range of collision energies and for several particle species. The
study includes a detailed analysis of the covariances of the fitting parameters, largely
extending previous investigations. Such an accurate analysis is of relevance in view of
the predictions, by a thermofractal model of quantum chromodynamics (QCD), that the
value for the entropic parameter, q, is calculated in terms of the fundamental parameters of
the theory, namely, the number of colors, Nc, and the number of flavors, N f , by a famous
relation, (q− 1)−1 = (11/3)Nc − (4/3)N f /2, resulting to q = 8/7 [14]. Cleymans’ study
represents a rigorous test for the theoretical prediction [9]. The line of research, to which
Cleymans contributed so extensively, is believed to continue to develope for many years to
come, contributing to our knowledge about the strongly interacting systems.

In this paper, a systematic analysis of the HEC data is conducted in the style that
Cleymans used to perform in his late years. The formula by Cleymans for the transverse
momentum (pT) distribution is used to fit the experimental data at different energies and
for different particle species. The results are compared with the fits, obtained by other
formulas. The analysis, presented here, is restricted to proton-proton (pp) collisions, since,
for larger systems, other phenomena can interfere, such as the collective flow. The inclusion
of this effect in the statistical description of the multiparticle production is possible, but it
demands additional parameters, which we want to avoid at this stage of the investigation.

2. Momentum Distributions

The main formula for pT-distribution is

d2N
dpT dy

= gV
pTmT cosh y

(2π)2

(
1 + (q− 1)

mT cosh y− µ

T

) −q
q−1

, (1)

where N is the number of particles, V is the volume g, p, y, and µ denote the the particle
degeneracy, momentum, rapidity, and chemical potential, respectively, and mT is the

particle transverse mass, mT =
√

p2
T + m2

0, with m0 the remaining mass of the particle.
Equation (1) was shown by Cleymans and Worku [5] to be a direct consequence of the
Tsallis non-additive entropy when the correct thermodynamical relations are applied. In
what follows, Equation (1) is addressed as the Cleymans formula.

All parameters in the Cleymans formula present well-understood physical meanings,
and the insistence of Cleymans in the use of the correct formula shows that he always
considered the Tsallis statistics to play an underlying physical role in the high-energy
processes. Many studies, presenting analyses of HEC data using Cleymans’ approach, have
appeared during the last few years [15–23].

It is typical, however, to find different forms of the same expression being used to fit
high-energy collision distributions [24]. Setting y = 0 and µ = 0 in Equation (1):

d2N
dpTdy

=
dN
dy

(n− 1)(n− 2)pT
nT[nT + m0(n− 2)]

(
1 +

mT −m0

nT

)−n
, (2)

where the chemical potential is fixed to the particle mass, i.e., µ = m0, and the power
exponent, n = q/(q− 1). However, the multiplication factor, mT , is absent in Equation (2),
giving space to a dependence on the temperature, T. The term, dN/dy, represents the
rapidity density, and it is generally calculated in a small window around y = 0, being
assumed to be an arbitrary constant in the fits. In what follows, Equation (2) is addressed
as the Levy–Tsallis formula.
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Another form of the distribution is the so called Tsallis–Pareto formula [25],

d2N
dpTdy

= C× pao
T ×

(
1 +

mT −m0

nT

)−n
, (3)

where C and ao are adjustable constants, which are obtained at y = 0 and µ = 0.
The three formulas are similar in many aspects, and they all fit the data well enough.

The only important difference is the factor mT , which is changed into a temperature
dependence normalization in Equation (2) and completely disappears in Equation (3). In
short, pTmT in Equation (1) is changed to pT in Equation (2) and pa0

T in Equation (3). To
better understand the formulas and the approximations involved, it is constructive to
calculate Equation (1) from the first principles, and then relate the result to other formulas;
for a discussion about the behavior of the frequently used formulas, see Ref. [26].

The fundamental quantity is the number of one-particle configurations in the phase
space according to Tsallis statistics, which is given by

dN = NgV
d4 p
(2π)4

(
1 + (q− 1)

E− µ

T

) −q
q−1

δ(p2 −m2
0)Θ(E) , (4)

where N is the number of particles per event, E = p0 and p are the particle energy and
four-momentum, respectively, with p2 = p2

0 − ~p2. Integrating over p0, and dividing by the
total number of the particles produced in the event, one gets the probability density:

1
N

d3N = gV
d3 p
(2π)3

1
2E

(
1 + (q− 1)

E− µ

T

) −q
q−1

. (5)

The rapidity y is defined by the relation,

ey =
E + p3

mT
, (6)

where p3 is the longitudinal momentum. From definition (6), E = mT cosh y. The indepen-
dent coordinates of the momentum can be used to replace p3 by y. The definition of the
rapidity is equivalent to defining {

E = mT cosh y ,
p3 = mT sinh y ,

(7)

therefore, p3/E = tanh y ≡ β and dp3 = mT cosh y dy = E dy, where β = v/c with v being
the velocity of a beam in the rest frame and c the speed of light.

The volume element is d3 p = 2πpTdpTdp3; then, using Equation (5) and the rela-
tions (7), one finds:

1
N

d2N
dpTdy

=
E
N

d2N
dpTdp3

=
gVpT

2(2π)2

(
1 + (q− 1)

mT cosh y− µ

T

)− q
q−1

. (8)

One can see that Equation (8) is similar to Equation (3) with ao = 1 and differs from
Equation (1) by an absence of the multiplicative term mT cosh y. Equation (8) also differs
from Equation (2), since the first equation has a dependence on the chemical potential that is
not present in the second one. A detailed discussion about the Lorentz transformation of the
transverse momentum distribution can be found in Ref. [18]. In what follows, Equation (8)
is addressed as the Lorentz invariant cross-section formula.

In the analysis, a care should be taken the correct double differential distribution is
used in terms of momentum components or in terms of rapidity, since this leads to different
formulas. Moreover, the invariant differential distribution should be used. In the analysis
below, the quality of the fits, obtained with the Formulas (1)–(3) and (8) is investigated, and
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the parameters obtained are compared in order to identify the correspondences. The non-
extensive formulas, used here, are able to fit data of transverse momentum distributions
over many orders of magnitude, and can be related to physical phenomena that need
further investigation [1]. In the following, a brief discussion about the behavior of the
parameters obtained with the different formulas is given, while a detailed consideration of
the physical aspects of the results is left for the future.

3. Analysis

In the present analysis, the free parameters in Equations (1)–(3) are obtained by fits
to the distributions from high-energy (pp) collision data, reported in Refs. [27,28]. For
Equation (3), two different methods are used for fitting the data distributions, namely, one
using the parameter ao free to be adjusted to the measurements, and another method fixing
ao: ao = 1. The results of the fits for different particle species and energies, as fitted by each
of the Formulas (1)–(3), analyzed here, are displayed in Figure 1. The best-fit parameters
for each formula are displayed in Tables 1–5. Note that the errors of the multiplicative
constant that result from the fits of the curves for the last three sets of data are much larger
than the errors for the other cases.

Table 1. Best-fit parameters of the Cleymans Formula (1). The data represent proton-proton collisions
at the center-of-mass energies,

√
s = 0.9 and 7 TeV from Refs. [27,28]. The particle masses are taken

from [29]. In the last column, the χ2-statistics values are given per the number of degrees of freedom
(ndf).

√
s (TeV) Particle q T (GeV) m0 (GeV/c2) gV (fm3) µ (GeV) χ2/ndf

0.9 π+ 1.148 ± 0.005 0.091 ± 0.001 0.139570 (4.07± 0.04)× 103 0.141 ± 0.002 3.67/29

0.9 π− 1.145 ± 0.005 0.076 ± 0.002 0.139570 (1.80± 0.02)× 104 0.031 ± 0.004 2.19/29

0.9 K+ 1.176 ± 0.015 0.092 ± 0.005 0.49368 (1.02± 0.02)× 103 0.20 ± 0.02 5.34/23

0.9 K− 1.16 ± 0.01 0.084 ± 0.006 0.49368 (2.33± 0.04)× 103 0.129 ± 0.026 3.50/23

0.9 p 1.16 ± 0.02 0.09 ± 0.01 0.938272 774 ± 16 0.44 ± 0.05 7.43/21

0.9 p̄ 1.13 ± 0.02 0.10 ± 0.01 0.938272 730 ± 20 0.36 ± 0.06 7.78/20

0.9 π0 1.14 ± 0.03 0.08 ± 0.04 0.134977 (1 ± 4) × 108 −0.05 ± 0.32 0.51/9

7 π0 1.148 ± 0.005 0.13 ± 0.10 0.134977 (0.5 ± 2.7)×107 0.2 ± 0.6 0.94/29

7 η 1.15 ± 0.03 0.1 ± 0.2 0.54751 (0.2 ± 1.8) × 107 0.1 ± 1.2 0.09/9

Table 2. Best-fit parameters of the Levy–Tsallis Formula (2). For details, see Table 1.

√
s (TeV) Particle q T (GeV) m0 (GeV/c2) dN/dy χ2/ndf

0.9 π+ 1.148 ± 0.008 0.126 ± 0.003 0.139570 1.49 ± 0.02 3.07/30

0.9 π− 1.142 ± 0.008 0.128 ± 0.003 0.139570 1.48 ± 0.02 1.84/30

0.9 K+ 1.21 ± 0.02 0.159 ± 0.009 0.49368 0.184 ± 0.004 5.41/24

0.9 K− 1.19 ± 0.02 0.162 ± 0.009 0.49368 0.182 ± 0.004 3.59/24

0.9 p 1.19 ± 0.03 0.17 ± 0.01 0.938272 0.083 ± 0.002 7.43/21

0.9 p̄ 1.14 ± 0.03 0.19 ± 0.01 0.938272 0.079 ± 0.002 7.75/21

0.9 π0 1.15 ± 0.04 0.13 ± 0.05 0.134977 (9 ± 5) × 104 0.47/10

7 π0 1.171 ± 0.007 0.14 ± 0.01 0.134977 (17 ± 3) × 104 1.17/30

7 η 1.17 ± 0.04 0.23 ± 0.05 0.54751 (15 ± 5) × 103 0.09/10
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Table 3. Best-fit parameters of the Tsallis–Pareto Formula (3), where the parameter ao is adjustable.
For details, see Table 1.

√
s (TeV) Particle q T (GeV) m0 (GeV/c2) C [(GeV/c)−a0−1] a0 χ2/ndf

0.9 π+ 1.15 ± 0.01 0.12 ± 0.02 0.139570 43 ± 18 1.1 ± 0.2 2.69/29

0.9 π− 1.148 ± 0.009 0.12 ± 0.01 0.139570 43 ± 17 1.1 ± 0.2 1.18 /29

0.9 K+ 1.22 ± 0.03 0.13 ± 0.04 0.49368 2 ± 1 1.2 ± 0.4 5.02/23

0.9 K− 1.20 ± 0.03 0.14 ± 0.04 0.49368 1.94 ± 1.20 1.3 ± 0.4 3.12/23

0.9 p 1.13 ± 0.07 0.23 ± 0.07 0.938272 0.24 ± 0.08 0.6 ± 0.4 6.48/20

0.9 p̄ 1.08 ± 0.07 0.27 ± 0.07 0.938272 0.19 ± 0.06 0.6 ± 0.3 6.27/20

0.9 π0 1.1 ± 0.3 0.5 ± 1.1 0.134977 (0.8 ± 2.7) × 105 −1 ± 3 0.34/9

7 π0 1.14 ± 0.02 0.09 ± 0.03 0.134977 (3± 4) × 107 2 ± 1 0.90/29

7 η 1.17 ± 0.06 0.2 ± 0.3 0.54751 (0.7 ± 2.0) × 105 1 ± 3 0.09/9

Table 4. Best-fit parameters of the Tsallis–Pareto Formula 3, where the parameter ao = 1 is fixed. For
details, see Table 1.

G (TeV) Particle q T (GeV) m0 (GeV/c2) C [(GeV/c)−a0−1] χ2/ndf

0.9 π+ 1.148 ± 0.008 0.126 ± 0.003 0.139570 33.4 ± 0.8 3.07/30

0.9 π− 1.142 ± 0.008 0.128 ± 0.003 0.139570 32.7 ± 0.7 1.84/30

0.9 K+ 1.21 ± 0.02 0.159 ± 0.009 0.49368 1.30 ± 0.07 5.41/24

0.9 K− 1.19 ± 0.02 0.162 ± 0.009 0.49368 1.30 ± 0.06 3.59/24

0.9 p 1.19 ± 0.03 0.17 ± 0.01 0.938272 0.34 ± 0.02 7.43/21

0.9 p̄ 1.14 ± 0.03 0.19 ± 0.01 0.938272 0.31 ± 0.02 7.75/21

0.9 π0 1.15 ± 0.04 0.13 ± 0.05 0.134977 (2 ± 2) × 106 0.47/10

7 π0 1.171 ± 0.007 0.14 ± 0.01 0.134977 (31 ± 9) × 105 1.17/30

7 η 1.17 ± 0.04 0.23 ± 0.05 0.54751 (7 ± 4) × 104 0.09/10

Table 5. Best-fit parameters of the Lorentz invariant cross-section Formula (8). For details, see
Table 1.

√
s (TeV) Particle q T (GeV) m0 (GeV/c2) gV (fm3) µ (GeV) χ2/ndf

0.9 π+ 1.148 ± 0.008 0.115 ± 0.003 0.139570 (3.97± 0.06)× 103 −0.062 ± 0.009 3.07/29

0.9 π− 1.142 ± 0.008 0.124 ± 0.003 0.139570 (2.43± 0.04)× 103 −0.017 ± 0.007 1.84/29

0.9 K+ 1.21 ± 0.02 0.107 ± 0.009 0.49368 789 ± 20 0.08 ± 0.04 5.41/23

0.9 K− 1.19 ± 0.02 0.111 ± 0.009 0.49368 825 ± 20 0.06 ± 0.04 3.60/23

0.9 p 1.19 ± 0.03 0.10 ± 0.01 0.938272 442 ± 8 0.41 ± 0.06 7.43/20

0.9 p̄ 1.14 ± 0.03 0.11 ± 0.02 0.938272 (1.03± 0.08)× 103 0.23 ± 0.08 7.75/20

0.9 π0 1.15 ± 0.04 0.1 ± 0.2 0.134977 (0.1 ± 1.4) × 108 −0.08 ± 1.12 0.47/9

7 π0 1.171 ± 0.007 0.12 ± 0.02 0.134977 (2 ± 3) × 107 −0.10 ± 0.15 1.17/29

7 η 1.17 ± 0.04 0.2 ± 0.4 0.54751 (0.6 ± 8.4) × 106 0.1 ± 2.2 0.09/9

The large errors are due to the fact that, in these sets of data, the experimental data
do not cover the region of the peak of the corresponding curves, as can be observed in the
right panels of Figure 1. In these cases, the determination of the multiplicative constant,
C, leads to a large number of combinations of T and C that can fit the data. The fitting
procedure was performed with the use of the ROOT package, and the covariance matrix
was obtained by using the MIGRAD routine in this package.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. The double-differential transverse momentum distributions with the fits by (a,b) Equa-
tion (1), (c,d) Equation (2), and (e–h) Equation (3), with the parameter ao left free (e,f) and ao = 1
(g,h). The data are from proton-proton collisons at the center-of-mass energies,

√
s = 0.9 and 7 TeV;

taken from [27,28].
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As one can observe from the χ2 values of the best fits, shown in Tables 1–5, all formulas
fit the data well enough, except the small differences in the parameterization. One could
expect that Equations (2) and (3) with ao = 1 would give similar results because the only
difference is the incorporation of the temperature, T, in an overall normalization constant,
C. This expectation is indeed observed in the results of the fits in Tables 2 and 4. Since
T does not depend on pT , this difference would be of no significance for the fits using
Formulas (2) and (3). On the contrary, the Cleymans–Worku Formula (1) does have an
additional dependence in the multiplication factor through the term mT . The effects of the
factors pT and mT on the distributions can be understood notifying that

mT =
√

p2
T + m2

0 = m0

√
1 + (pT/m0)2 , (9)

which is approximately constant and equal to m0 for pT � m0. Therefore, only in the low
pT � m0 range of transverse momentum, the additional factor, mT , is insignificant for the
fits. The temperature, T, is well determined in the sets of data that cover the peak in the
pT-distribution.

The systematic analysis of the parameters is performed by comparing the behavior
of the parameters q and T, extracted from the fit. The relation between n and q is used
where necessary. The results of the analysis of the mass dependencies of the parameters are
displayed in Figure 2. One has to remember, that the different exponents in the Cleymans
formula and in the other formulas will lead to different numerical values for q and T.

Some authors, as in Refs. [1,18,25], adopt n = 1/(q′ − 1), and in such cases, it is
possible to relate the values qC and TC from the Cleymans formula to the values q′ and T′

from the other formulas by the relations,{
qC = 1/(2− q′)
TC = q′T′

. (10)

One observes that the results for the best-fit value of the parameter q are similar for all
formulas used, with results fluctuating around the expected theoretical value of q = 1.143.
Using the relation above, one may expect qC = 1.16 for the Cleymans formula. As can
be observed in Figure 2a,b, there is no clear dependence observed on the particle mass
or collision energy. The behavior of the parameter T, however, is different and shows a
dependence on the particle mass for all formulas, except that for the Cleymans formula.
This result might be related to the fact that, in the Cleymans formula, the chemical potential
is a free parameter, while in the other formulas, it is the constant particle mass.

A theoretical study, generalizing Hagedorn’s self-consistent thermodynamics by the
inclusion of the Tsallis statistics, leads to the non-extensive self-consistent thermodynam-
ics [30], which predicts that the ratio T/(q− 1) should be independent of the the collision
energy or particle species. In Figure 2c, this result is demonstrated by all formulas used,
except the Tsallis–Pareto formula with the free parameter ao.
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(a) (b)

(c)

Figure 2. Behavior of the Tsallis exponent, q, temperature, T, and the ratio, T/(q− 1), as a function
of the particle species. extracted from the fits with different formulas. The relation, n = (q− 1)−1,
used where necessary (see the text for details). (a) Tsallis exponent, q (b) temperature, T (c) the ratio,
T/(q− 1).

Contrary to what would be expected, the results of the analysis of the parameters
show that the behavior of the parameters q and T is similar for Equations (1) and (2), but
the values of the parameters differ from the values, obtained by Equation (3), mainly, for
the heavier particles. Significantly smaller differences are observed from the comparison of
the fits for other particles.

One can observe that, despite the plain curves, obtained with the formulas, used in
the present analysis, the fitting procedure is not as direct. There are strong correlations
among the fitting parameters, which can be observed by an analysis of the covariances.
The introduction of the chemical potential as a free parameter makes the problem worse.
Actually, it is always possible to obtain an equivalent fitting by fixing µ = 0 if the mul-
tiplicative constant and the temperature are both adjustable. This is an indication of the
limits of an analysis, based exclusively on the pT-distribution data. Additional hypotheses
or complementary analyses of, e.g., the ratio of the particle species yields, are necessary to
determine unambiguously all the parameters.

Whereas the differences in the formulas, used in this analysis, are subtle when ob-
served through the obtained best-fit parameters, the analysis of the covariances among the
parameters shows clear differences depending on the formula used. Figure 3 shows the
correlation among the parameters q and T obtained for each particle species and collision
energy and for all formulas, used in this analysis. The ellipses show the 5% confidence
level of the fitting, demonstrating a strong correlation between these two parameters. The
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theoretical values are indicated in Figure 3 and one can see that the expected values are
attained within errors for all formulas. One can also observe that the covariances change
significantly from one formula to another, except of the Levy–Tsallis formula and the Tsallis–
Pareto formula with ao = 1. This was expected since these two formulas differ only by the
inclusion of a multiplicative term that depends on q and T in the Levy–Tsallis formula.

(a) (b)

(c) (d)

Figure 3. Joint confidence region on the T–q plane in the parameter space, with significance, α = 5%.
The regions are obtained by using (a) Equation (1), (b) Equation (2), and (c,d) Equation (3), with (c)
the parameter ao left free to adjust and (d) fixed to the value ao = 1. The results for

√
s = 7 TeV are

indicated by the asterisks and the results for
√

s = 0.9 TeV are indicated by the solid circles for the
centers of the ellipses.

A final analysis is performed by using the Lorentz invariant cross-section Formula (8).
Observe that the multiplication factor, pT , exponent, ao = 1, and the chemical potential
remains as an adjustable parameter. This formula allows us to test the hypothesis made
above, i.e., that the variations in the temperature with the particle species, observed in
some of the fits, are due to the fact that, in those cases, the chemical potential is fixed to the
particle mass, while in the Cleymans formula, this parameter is an adjustable.

The results of the fittings with the Lorentz invariant cross-section formula are pre-
sented in Figure 4, and one observes that the data are well fitted also in this case. The best-fit
parameters are listed in Table 5, and one can observe that the reduced χ2, corresponding to
the fitting, is small and comparable to those, obtained with other formulas.
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Figure 4. The double-differential transverse momentum distributions, fitted by the Lorentz invariant
cross-section (8). The data are from [27,28].

The analysis of the parameters, obtained with the Lorentz invariant cross-section
formula, are shown in Figure 2 by open circles. Whereas the results for q do not change
significantly with respect to other formulas, one observes that the temperature, T, with the
Lorentz invariant cross-section formula represents a behavior similar to that, observed with
the Cleymans formula. Therefore, this result confirms the hypothesis that the dependence
on T is due to the fact that the chemical potential is fixed in some of the formulas. The
ratio, T/(q − 1), remains almost constant, as observed in all other formulas with the
multiplicative term proportional to pT .

In Figure 5, the chemical potential is shown for different particle species and collision
energies along with the covariances between the parameters T and q for the fit with the
Lorentz invariant cross-section formula. One can see that the chemical potential does not
present any evident dependence on the particle mass or on the collision energy, but may
depend on the baryonic number, since it is slightly higher for the cases of the proton and the
anti-proton. This is in contrast with the assumptions in the Pareto–Tsallis and Levy–Tsallis
formulas, where the chemical potential is assumed to be equal to the particle mass.

Except for proton and anti-proton, the chemical potentials are small or compatible
with the value µ = 0 for all other particles, independently of the collision energy. This
result is in agreement with the findings of Cleymans and collaborators [20], where it is
shown that the correlations between the parameters T, µ, and the multiplicative constant,
V, allow one to set µ = 0 and still obtain the same result with different values for T and V.
Using the Lorentz invariant cross-section formula, it was verified that fixing µ = 0 leads to
the same fitted curve, the best-fit value for q does not change, and the values for T and V
change according to the relations, found in Ref. [20] for all particles species, analyzed in
the present paper. Let us note that the ellipses showing the covariance of the parameters
T and q, shown in Figure 5, are similar to those obtained for the Cleymans formula. This
is an indication that the adjustable chemical potential parameter has an influence on the
result for the parameter T, as discussed above, and, thus, interferes with the correlation
between the fit results for T and q. To note also is that there is a shift in the centroid of the
ellipses with respect to those of the Cleymans’ formula. This shift results from the different
behavior of the multiplicative factor of the formulas with the transverse mass, mT .
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Figure 5. Left: the dependence of the chemical potential, µ, on the particle species. The results are
for the Cleymans Formula (1) (solid squares) and for the Lorentz invariant cross-section Formula (8)
(open circles). The dotted and dashed lines represent the average value for the chemical potential,
obtained by the Cleymans formula and the Lorentz invariant cross-section formula, respectively.
Right: the covariances in the T–q plane in the parameter space, corresponding to Lorentz invariant
cross-section Formula. The results for

√
s = 7 TeV are indicated by the asterisks and the results for√

s = 0.9 TeV are indicated by the solid circles for the centers of the ellipses.

4. Conclusions

In this paper, the analysis of the high-energy proton-proton collison data is performed
using the methods of the non-extensive distributions developed by Jean Cleymans. The
results are compared through different transverse momentum distribution formulas. It is
shown that all formulas fit well the data, while giving different best-fit parameters.

The best-fit values of the parameters are discussed and, for the parameter q, the
results are compared to the expected values according to the a fractal approach to quantum
chromodynamics (QCD) [14]. In most cases, the predicted fractal approach value is attained
by the different distributions; however, it is important to consider the covariances of the
parameters, as shown in Figures 3 and 5 (Right).

It is not the objective of this study to make definitive conclusions, based on the results
obtained. A more comprehensive analysis to make firmer conclusions is needed and is
planned for the future. However, the present paper illustrates the importance of this type of
analysis, to great extent developed by Jean Cleymans, for the understanding of the complex
phenomena taking place during the multiparticle production in high-energy collisions.

A new phenomenon has emerged [31] in the analysis of the particle distributions
using the non-extensive statistics. Therefore, a correct and accurate description of the
distributions, finding the hidden patterns in the obtained parameters, will allow us to
advance further in the understanding of the QCD at the non-perturbative regime.

We would like to remark here that the present analysis needs to be continued by the
inclusion of additional data sets in order to arrive at firmer conclusions. This will allow
us to perform statistical tests for theoretical predictions. However, the procedure adopted
here, analyzing exclusively the transverse momentum, pT , distributions, is not able to
provide a complete determination of all the parameters. The point that any fit can be
equally reproduced by fixing the chemical potential and allowing the temperature and the
multiplicative factor to adjust freely is an indication that one needs additional hypotheses
or complementary analyses of, e.g., the ratio of the yields of different particle species, in
order to completely determine all parameters in the formulas. Nevertheless, one conclusion
that can be drawn from this partial analysis is that a thermodynamical approach describes
the multiparticle production process, and, therefore, the hypothesis of thermal equilibrium
of the system at the freeze-out stage is robust.
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Let us recall that in the non-extensive statistics, the temperature fluctuations play a
major role, as has been demonstrated by many studies [24,32,33]. This aspect has implica-
tions in the equilibrium described by the Tsallis statistics, which must accommodate these
fluctuations. This issue is considered in Ref. [34].
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