GRENAC's Latest Activities in Nuclear Reactor Development

Paula Fernanda Toledo Matuoka

GRENAC Weekly Meeting

paulaftm@gmail.com

Wednesday, May 17th, 2017

GRENAC - Gupo de Reações Nucleares, Aplicações e Computação

GRENAC's Nuclear Reactors Branch:

- Dr. Airton Deppman Coord.
- Paula Matuoka, PhD.
- Renato Nunes, MSc.

- Dr. Giovanni de Stefani (IPEN).
- Dr. Pedro Rossi (UFABC).

GRENAC - Gupo de Reações Nucleares, Aplicações e Computação

GRENAC's Nuclear Reactors Branch:

- Dr. Airton Deppman Coord.
- Paula Matuoka, PhD.
- Renato Nunes, MSc.

- Dr. Giovanni de Stefani (IPEN).
- Dr. Pedro Rossi (UFABC).

Previous work:

- Study of nuclear reactions involving heavy nuclei and intermediate- and high-energy protons and an application in nuclear reactor physics (ADS) Paula Matuoka (IFUSP, MSc), 2016.
- High energy nuclear reactions ("Spallation") and their application in calculation of the acceleration driven systems (ADS)
 Pedro Rossi (IPEN, PhD), 2011.
- An alternative proposal for a hybrid reactor (subcritical facility coupled with an accelerator)
 Sérgio Pereira (IPEN, PhD), 2002.

New research proposal (2017): **ADS Nuclear Reactor using thorium cicle.** Renato Nunes, MSc.

New research proposal (2017): ADS Nuclear Reactor using thorium cicle.

Renato Nunes, MSc.

Year	Who	Main subject	Nuc.Fuel E _p (MeV)		Target	Model/Codes
2002	S.Pereira	ADS/Subcritical reactor	²³² Th/ ²³³ U	500	Pb	MCNP4
2011	P.Rossi	Spallation source				CRISP, MCNPX
2016	P.Matuoka	Nuc.Reac./ADS Reactor	²³⁸ U/ ²³⁹ Pu	1200	Pb	CRISP, MCNP5, Serpent
2019*	R.Nunes	ADS Reactor	²³² Th/ ²³³ U			CRISP, MCNPX, Serpent

New research proposal (2017): ADS Nuclear Reactor using thorium cicle.

Renato Nunes, MSc.

Year	Who	Main subject	Nuc.Fuel	E_p (MeV)	Target	Model/Codes
2002	S.Pereira	ADS/Subcritical reactor	²³² Th/ ²³³ U	500	Pb	MCNP4
2011	P.Rossi	Spallation source				CRISP, MCNPX
2016	P.Matuoka	Nuc.Reac./ADS Reactor	²³⁸ U/ ²³⁹ Pu	1200	Pb	CRISP, MCNP5, Serpent
2019*	R.Nunes	ADS Reactor	²³² Th/ ²³³ U			CRISP, MCNPX, Serpent

Starting point:

- Interactions of protons with matter.
- Spallation neutron source: thick target.
- ADS nuclear reactor from previous work (Matuoka, 2016).

New research proposal (2017): ADS Nuclear Reactor using thorium cicle.

Renato Nunes, MSc.

Year	Who	Main subject	Nuc.Fuel	E_p (MeV)	Target	Model/Codes
2002	S.Pereira	ADS/Subcritical reactor	²³² Th/ ²³³ U	500	Pb	MCNP4
2011	P.Rossi	Spallation source				CRISP, MCNPX
2016	P.Matuoka	Nuc.Reac./ADS Reactor	²³⁸ U/ ²³⁹ Pu	1200	Pb	CRISP, MCNP5, Serpent
2019*	R.Nunes	ADS Reactor	²³² Th/ ²³³ U			CRISP, MCNPX, Serpent

Starting point:

- Interactions of protons with matter.
- Spallation neutron source: thick target.
- ADS nuclear reactor from previous work (Matuoka, 2016).

Preliminary results to be presented by Paula Matuoka at the XL Brazilian Meeting on Nuclear Physics (Campos do Jordão, 3-7 Sep/2017).

Previous work (Matuoka, 2016):

- Target: liquid LBE cylinder (H = 3m; D = 40cm).
- Neutrons spatial distribution: isotropic around the target.
- Neutrons energy distribution: evaporation (Weisskopf) spectrum.
- SIMPLIFIED!

Previous work (Matuoka, 2016):

- Target: liquid LBE cylinder (H = 3m; D = 40cm).
- Neutrons spatial distribution: isotropic around the target.
- Neutrons energy distribution: evaporation (Weisskopf) spectrum.
- SIMPLIFIED!

New approach (possible lines):

- Atomic processes (dE/dx): spatial and energy distribution of protons inside the target.
- Transport of high-energy particles in matter.
- Target design: optimized dimensions.
- MORE REALISTIC neutron distributions (spatial and energy).

Previous work (Matuoka, 2016):

- Target: liquid LBE cylinder (H = 3m; D = 40cm).
- Neutrons spatial distribution: isotropic around the target.
- Neutrons energy distribution: evaporation (Weisskopf) spectrum.
- SIMPLIFIED!

New approach (possible lines):

- Atomic processes (dE/dx): spatial and energy distribution of protons inside the target.
- Transport of high-energy particles in matter.
- Target design: optimized dimensions.
- MORE REALISTIC neutron distributions (spatial and energy).

New questions:

- Would the neutron multiplicity increase or decrease?
- Would it change significantly the fragment production?

Reference:

Handbook of Spallation Research: Theory, Experiments and Applications.

D.Filges & F.Goldenbaum, Wiley,

2009 (p.22).

Figure 1 : Spallation: particle/fragment production.

Bethe-Bloch Formula – Energy loss by collision (dE/dx)

For massive charged particle $(m_0 >> m_e)$.

$$-\frac{dE}{dx} = \frac{2\pi nz^2 e^4}{m_e v^2} \left\{ \ln \left[\frac{2m_e v^2 W_m}{I^2 (1-\beta^2)} \right] - 2\beta^2 - \delta - U \right\}$$
(1)

Where:

- *m_p* : incoming particle mass
- $v = \beta c$: incoming particle velocity
 - z : incoming particlecharge number
 - *m_e* : electron mass
 - n : number of electrons per cm³
 - *I* : mean excitation energy of the atoms of the material
 - W_m : maximum transferable energy from the incident particle to atomic electrons
 - δ : correction for density-effect.
 - *U* : shell correction term (for very low incoming kinetic energies).

Reference:

Principles of Radiation Interaction in Matter and Detection. C.Leroy & P.Rancoita, World Scientific, 2009 (p.32).

Bethe-Bloch Formula – Energy loss by collision (dE/dx)

Figure 2 : Bethe-Bloch Formula.

Paula Matuoka (IFUSP)

Nuclear Reactors

Ex: protons ($m_0 = 938.3 \text{ MeV}/c^2$).

$$p = \sqrt{E_k(E_k + 2m_0c^2)}/c \qquad (2)$$

Lead:
$$\rho_{Pb} = 11.34 \text{ g/cm}^3$$

ſ	E_k	р	-dE/dx	-dE/dx
	(GeV)	(GeV/c)	$(MeV/(g/cm^2))$	(MeV/cm)
ĺ	1.0	1.7	1.3	14.8
ĺ	1.2	1.9	1.2 (∼mip)	13.6

Reference:

Handbook of Spallation Research: Theory, Experiments and Applications.

D.Filges & F.Goldenbaum, Wiley, 2009 (p.35).

Figure 2 : Bethe-Bloch Formula.

Paula Matuoka (IFUSP)

Nuclear Reactors

Range

Figure 3 : Range.

Paula Matuoka (IFUSP)

Range

Ex: protons ($m_p = 938.3 \text{ MeV/c}^2$). Lead: $\rho_{Pb} = 11.34 \text{ g/cm}^3$

$Range \; [cm] = Range / m_p imes m_p / ho$							
	E_k	р	Range	Range			
	(GeV) (GeV/c)		$(g/(cm^2.GeV))$	(cm)			
	1.0	1.7	500	41			
	1.2	1.9	700	58			

Reference:

Handbook of Spallation Research: Theory, Experiments and Applications.

D.Filges & F.Goldenbaum, Wiley, 2009 (p.35).

Figure 3 : Range.

Paula Matuoka (IFUSP)

G. Barros et al. Neutron production evaluation from a ADS target utilizing the MCNPX 2.6.0 code. Brazilian Journal of Physics, 40(4), 414-418 (2010).

Energy loss: Nuclear/Electronic $\sim (A/Z)E^{0.75}$.

- 1 GeV proton on lead:
 - Electronic range: 45 cm
 - Nuclear range: 16 cm
 - Nuc/Elec ~ 2.5

Figure 4 : Spallation target and beam profile.

G. Barros et al. Neutron production evaluation from a ADS target utilizing the MCNPX 2.6.0 code. Brazilian Journal of Physics, 40(4), 414-418 (2010).

Energy loss: Nuclear/Electronic $\sim (A/Z)E^{0.75}$.

- 1 GeV proton on lead:
 - Electronic range: 45 cm
 - Nuclear range: 16 cm

• Nuc/Elec ~ 2.5

Figure 4 : Spallation target and beam profile.

MCNPX User's Manual Appendix E: Spallation source tutorial.

Particle transport simulation

Figure 5 : Particle showers on lead.

GEANT4 Simulation:

Hadronic interactions, multiple scattering, bremsstrahlung, ionization, pair production, photo-Compton effects, electroweak decays, and annihilation.

Color label:

Protons	: blue
Neutrons	: yellow
Photons	: gray
$Muons^-$: red
$Electrons^-$: magenta

Reference:

Handbook of Spallation Research: Theory, Experiments and Applications.

D.Filges & F.Goldenbaum, Wiley, 2009 (p.187).

Particle transport codes and models

	MCNPX	PHITS	FLUKA	GEANT4	MARS
Particles Energy loss Scattering Straggling Cherenkov	34 Bethe-Bloch Rossi Vavilov No	38 id. Moliere Vavilov No	68 id. Moliere custom Yes	68 id. Lewis Urban Yes	41 id. Moliere custom No
Low-energy neutrons	Cont. ENDF	Cont. ENDF	72 multi- group	Cont. ENDF	Cont. ENDF
Low-energy protons Used models	Cont. ENDF Models	Models models	Models Models	Models Models	Models Models
e.g.,	Bertini ISABEL INCL/CEM LAQGSM FLUKA89	Bertini GEMJAM JAM/JQMD >3GeV	PEANUT DPMJET Glauber neutrinos	Bertini INCL ABLA GEM GHEISHA	CEM LAQGSM DPMJET
Other features Delayed decay of	$n's/\gamma's$	n's	$\beta's \mid \gamma's$	$\alpha's/\beta's/\gamma's$	$\gamma's$
Eigenvalue Burn-up Fields E, B	Yes Yes Yes	No No Yes	No No Yes	No No Yes	No No Yes

Figure 6 : Code comparison. Reference: Handbook of Spallation Research: Theory, Experiments and Applications. D.Filges & F.Goldenbaum, Wiley, 2009 (p.211).

Status

Status (now):

- Study on Bethe-Bloch implementation Paula & Renato Proton energy loss for different depths of the target $\rightarrow E_i \rightarrow \text{CRISP}$
- MCNPX on PC ok!
- Installing MCNPX on GRENAC's cluster ongoing!
- Reviewing previous ADS design & materials Paula & Giovanni
 - 1. Thorium based PWR: burnt fuel \rightarrow ADS.
 - 2. ²³²Th/²³³U Breeder.
- Next meeting in \sim 10 days.

Status

Status (now):

- Study on Bethe-Bloch implementation Paula & Renato Proton energy loss for different depths of the target $\rightarrow E_i \rightarrow CRISP$
- MCNPX on PC ok!
- Installing MCNPX on GRENAC's cluster ongoing!
- Reviewing previous ADS design & materials Paula & Giovanni
 Thereium hazard DWD: humt fuel + ADS
 - 1. Thorium based PWR: burnt fuel \rightarrow ADS.
 - 2. 232 Th $/^{233}$ U Breeder.
- Next meeting in \sim 10 days.

XL Braz. Meet. on Nuc. Phys. (3-7 Sep/2017):

• Aug 7: manuscript submission for the proceedings.

Status

Status (now):

- Study on Bethe-Bloch implementation Paula & Renato Proton energy loss for different depths of the target $\rightarrow E_i \rightarrow \text{CRISP}$
- MCNPX on PC ok!
- Installing MCNPX on GRENAC's cluster ongoing!
- Reviewing previous ADS design & materials Paula & Giovanni
 1. Thorium based PWR: burnt fuel → ADS.
 - 2. ²³²Th/²³³U Breeder.
- Next meeting in \sim 10 days.

XL Braz. Meet. on Nuc. Phys. (3-7 Sep/2017):

• Aug 7: manuscript submission for the proceedings.

To think about:

• Coupling CRISP to a particle transport code (GEANT4?).

Thank you!