Nuclear Modification Factor in High Energy Collisions

Nuclear modification factor

$$R_{AA}(p_T) = \frac{1}{N_{\text{coll}}(\epsilon)} \frac{dN^{AA}/dp_T dy}{dN^{pp}/dp_T dy}$$

ALICE 2.76 TeV - Charged particle production (PbPb and pp)

Expanding hyper volume

$$\Sigmaig(x_0,x_1,x_2,x_3)=(x_0,x_1,x_2,x_3(x_0)ig)$$

Cooper-Frye

Freeze-out
$$N=\int_\Sigma dN^\mu j_\mu \ o \ Erac{dN}{d^3p}=rac{1}{(2\pi)^3}\int_\Sigma dN^\mu p_\mu f(p)$$

Longitudinally boost-invariant volume

$$\Sigma_{\mu} = \left(au(x,y)\cosh\eta, x,y, au(x,y)\sinh\eta
ight) \qquad \left(au = \sqrt{t^2-z^2}, x,y,\eta = rac{1}{2}\lnrac{t+z}{t-z}
ight)$$

$$dN_{\mu}=\pm\varepsilon_{\mu\alpha\beta\gamma}\frac{\partial\Sigma_{\alpha}}{\partial\zeta}\frac{\partial\Sigma_{\beta}}{\partial\eta}\frac{\partial\Sigma_{\gamma}}{\partial\phi}d\zeta d\eta d\phi\quad \longrightarrow\quad dN_{\mu}=\left(\cosh\eta,-\frac{\partial\tau}{\partial x},-\frac{\partial\tau}{\partial y},-\sinh\eta\right)\tau(x,y)dxdyd\eta$$

 $dN_{\mu} = \left(\cosh\eta, -rac{\partial au}{\partial x}, -rac{\partial au}{\partial y}, -\sinh\eta
ight) au(x,y)dxdyd\eta$ Normal vector element

 $p^{\mu} = (m_T \cosh Y, p_x, p_y, m_T \sinh Y)$ Particle momentum

$$\Rightarrow \qquad p^{\mu} \cdot dN_{\mu} = \left(m_{T} \cosh(Y - \eta) - p_{x} rac{\partial au}{\partial x} - p_{y} rac{\partial au}{\partial y}
ight) au dx dy d\eta$$

Differential cross-section

$$Erac{dN}{d^3p} = rac{1}{(2\pi)^3} \int dx \ dy \ d\eta \ au(x,y) \left(m_T \cosh(Y-\eta) - p_x rac{\partial au}{\partial x} - p_y rac{\partial au}{\partial y}
ight) f(p^\mu u_\mu)$$

Simplified Blast-Wave

Fixed freeze-out time $\begin{cases} \frac{\partial \tau}{\partial x} = 0 \\ \frac{\partial \tau}{\partial x} = 0 \end{cases}$

$$\begin{cases} \frac{\partial \tau}{\partial x} = 0\\ \frac{\partial \tau}{\partial y} = 0 \end{cases}$$

 $dx \ dy
ightarrow 2\pi r_T dr_T$

$$Erac{dN}{d^3n}=rac{r_T^2~ au}{8\pi^2}\int d\eta~(m_T\cosh(Y-\eta))f(p_T)$$

Narrow range $\Delta \eta$ around $\eta = 0$

$$Erac{dN}{d^3p}=rac{gVm_{
m T}\cosh Y}{(2\pi)^3}f(p_T) \hspace{1cm} f(p_T)=\left[1+(q-1)rac{m_{T}\cosh Y}{T}
ight]^{-rac{q}{q-1}}$$

Plastino-Plastino equation - Parton dynamics in the QGP

(Fokker-Planck generalization with q-exp solutions)

$$rac{\partial f}{\partial t} - rac{\partial}{\partial p_i}igg(Ap_if + rac{\partial}{\partial p_i}Df^{2-q}igg) = 0$$

In the fluid frame

$$ar{p}_T^o = L_u[p_T^o] \qquad L_u(ec{p}) = \gamma_v \left(ec{p} - ec{v}E
ight)$$

Drag effect on momentum

$$ar{p}_T = ar{p}_T^o \exp(-A au) \quad A(p_T) = A_o \exp_q \left[-ar{m}_T/T
ight]$$

AA and pp distributions

$$Erac{dN}{d^3p}=rac{gVm_{
m T}\cosh Y}{(2\pi)^3}f(p_T) \hspace{1cm} f(p_T)=\left[1+(q-1)rac{m_T\cosh Y}{T}
ight]^{-rac{q}{q-1}}$$

$$f^{AA}(p_T) = f(p_T^o) = f\left(L_{-u}\left[\exp(A au)L_u[p_T]
ight]
ight)$$

$$R_{AA} = (N_{
m coll})^{-1} rac{V_{AA}}{V_{pp}} rac{f\left(L_{-u}\left[L_{u}[p]\exp(A au)
ight]
ight)}{f(p_T)} = R_{AA}^0 rac{f\left(L_{-u}\left[L_{u}[p]\exp(A au)
ight]
ight)}{f(p_T)}$$

Figure 1: (Left) The initial parton momentum in the local rest frame of the fluid.. (Right) The drift coefficient as a function of the observed transversal moment, according to Eq. (33).

Figure 2: (Left) The momentum of the parton in the moment it was created, p_T^o , as a function of the observed momentum p_T . (Right) Ratio p_T^o/p_T as a function of $\log p_T$.

Figure 7: The transverse momentum distributions for nucleus-nucleus collision (solid line) compared with the distribution for the proton-proton collision (dashed line).

Free parameters: $u, A_0\tau, R_{AA}^0, T_{AA}$

Fixed parameters:

$$u, A_0 \tau,$$

 $q = 1.16, \ m = 0.14 \ GeV, \ T_{pp} = 0.166 \ GeV \ (2.76 \ TeV), \ 0.079 \ GeV \ (5.02 \ TeV)$

$$f(p_T) = \left[1 + (q-1)rac{m_T\cosh Y}{T}
ight]^{-rac{1}{q-1}}
onumber \ R_{AA} = R_{AA}^0rac{f\left(L_{-u}\left[L_u[p]\exp(A au)
ight]
ight)}{f(p_T)}$$

(T_{pp} obtained from fitting pp

momentum distributions)

$$f(p_T) =$$

$$f(p_T) =$$

$$f(p_T) =$$

$$f(p_T) =$$

$$p_T) =$$

ALICE PbPb -> Charged X, 2.76 TeV

Centrality	и	$A_0 au$	R_{AA}^0	$T_{AA}[GeV]$	χ^2_{red}
0-5%	0.99895 ± 0.00006	0.49 ± 0.02	0.16 ± 0.011	0.192 ± 0.003	0.22
5-10%	0.99897 ± 0.00006	0.45 ± 0.02	0.17 ± 0.011	0.194 ± 0.003	0.16
10-20%	0.99895 ± 0.00007	0.42 ± 0.02	0.17 ± 0.012	0.197 ± 0.003	0.12
20-30%	0.99890 ± 0.00008	0.36 ± 0.02	0.19 ± 0.013	0.199 ± 0.003	0.14
30-40%	0.99891 ± 0.00010	0.31 ± 0.02	0.22 ± 0.015	0.197 ± 0.003	0.06
40-50%	0.9989 ± 0.00013	0.25 ± 0.02	0.27 ± 0.02	0.195 ± 0.003	0.07
50-60%	0.9988 ± 0.0002	0.19 ± 0.03	0.33 ± 0.02	0.192 ± 0.003	0.08
60-70%	0.9989 ± 0.0003	0.12 ± 0.03	0.42 ± 0.03	0.186 ± 0.003	0.06
70-80%	0.9991 ± 0.0004	0.08 ± 0.03	0.51 ± 0.04	0.180 ± 0.003	0.05

CMS PbPb -> Charged X, 5.02 TeV

Centrality	и	$A_0 au$	R^0_{AA}	T_{AA} [GeV]	χ^2_{red}
0-5%	0.9989 ± 0.00012	0.97 ± 0.05	0.036 ± 0.009	0.114 ± 0.005	1.45
5-10%	0.9990 ± 0.00012	0.90 ± 0.05	0.05 ± 0.012	0.110 ± 0.005	1.35
10-30%	0.9990 ± 0.00013	0.79 ± 0.05	0.05 ± 0.013	0.110 ± 0.004	0.9
30-50%	0.9989 ± 0.0002	0.60 ± 0.07	0.09 ± 0.02	0.106 ± 0.005	0.3
50-70%	0.9986 ± 0.0006	0.4 ± 0.10	0.18 ± 0.06	0.097 ± 0.005	0.07
70-90%	0.999 ± 0.003	0.0 ± 0.2	0.6 ± 0.2	0.082 ± 0.006	0.06

Complex q approach to log oscillations

$$g\left(p_{T}\right) = \left(1 + \frac{p_{T}}{nT}\right)^{m_{0}} \cdot R\left(p_{T}\right) \qquad \text{(Dressed tsallis)} \qquad m_{k} = -\frac{\ln\left(1 - \alpha n\right)}{\ln\left(1 + \alpha\right)} + \imath k \frac{2\pi}{\ln\left(1 + \alpha\right)} \quad (k = 0, 1)$$

$$1/n = (q - 1)$$

Where

$$R(p_T) \simeq \left\{ w_0 + w_1 \cos \left[\frac{2\pi}{\ln(1+\alpha)} \ln\left(1 + \frac{p_T}{nT}\right) \right] \right\}$$
 (Dressing factor)

M. Rybczyński, G. Wilk, and Z. Włodarczyk, "System size dependence of the log-periodic oscillations of transverse momentum spectra," *EPJ Web of Conferences*, vol. 90, p. 01002, 2015.

$$f(p_T) = C \cdot \left[1 - (1 - q) \frac{p_T}{T}\right]^{1/(1 - q)}$$

$$10^2$$

$$10^3$$

$$10^4$$

$$10^4$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-16}$$

$$10^{-18}$$

$$1 \qquad 10$$

$$10^2$$

$$10^{-18}$$

$$1 \qquad 10$$

$$10^2$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Our model

Expanding around $A(\bar{p}_T) au=0$

$$rac{p_T^o}{p_T} \simeq 1 + 2 ilde{A}_0 au\,(1+z)^{-m_0}\cos\left[c\log(1+z)
ight] \quad \sim R(p_T)$$

$$1+z=e^{-rac{\pi}{2c}}rac{1+x}{1+x_o}\,, \qquad y=x/x_o\,, \quad x_o=(q-1)m/T\,, \quad c=1+1/x_o\,.$$

$$ilde{A}_0 = \left(e^{rac{\pi}{2c}}(1+x_o)
ight)^{rac{1}{1-q}} mA_0$$

This corresponds to a q-complex Tsallis distribution with

$$m_k=rac{1}{q-1}+ik\left(1+rac{1}{x_o}
ight), \qquad (k=0,1,2,\cdots)$$

Summary

- We built a model to describe RAA data taking the momentum distribution from a simplified blast-wave model and applying medium effects from the Plastino-Plastino equation.
- We successfully described RAA data for 2.76 TeV charged particle production in all centralities, and less successfully for 5.02 TeV data.
- We connect our approach with the complex q model to explain log oscillations in p_{τ} distributions residuals

