

Reabsorção de Mésons π no CRISP

	Estados de Carga	Spin paridade	J^{π} Mass	sa(MeV)	Largura Γ (MeV)
Nucleon	proton neutron	1/2+	$m_p = 938.3$	<i>m</i> _n =939.6	n(Livre)
Pion	π^+ π^0 π^-	0+	$m_{\pi^{\pm}}$ = 139.6	$m_{\pi^0} = 135.0$	$\pi^0(\sim 8x10^{-6})$
∆-isobaro	$\Delta^{++}, \Delta^+, \Delta^0, \Delta^-$	- 3/2+	m_{Δ} =	1232	115
ρ – mesor	$\rho^+ \rho^0 \rho^-$	1+	$m_ ho$ =	= 769	154
$\omega - meson$	n ω^0	1+	m_{ω} :	= 783	10

Tamanho e Estrutura do Méson π

$$F_{\pi}(q^2) = 1 + \frac{1}{6} q^2 \langle r^2_{\pi} \rangle + \dots$$

$$\left\langle r_{\pi}^{2}\right\rangle ^{1/2}\cong$$
 0.66 fm

FIG. 1.3. Pion form factor in the space-like region with $q^2 < 0$ from Amendolia *et al.* (1984*a*,*b*). Its extrapolation to the time-like region is shown to the right. The curve is obtained with an improved ρ meson dominance fit (Brown *et al.* 1986).

Tamanho e Estrutura do Méson π

FIG. 1.5. Pion form factor in the time-like region. The experimental data are taken from Quenzer *et al.* (1978) and Amendolia *et al.* (1984*a*). The curve is obtained with a modified ρ meson dominance model (Brown *et al.* 1986).

Fotoprodução de Mésons π no Limiar

 $\begin{array}{l} Dipolo \ Elétrico \begin{cases} E_{0+} \ l=0 \ j^{\pi}=1/2^{-} \ q \rightarrow dominante \\ E_{2-} \ l=2 \ j^{\pi}=3/2^{-} \ q^{5} \rightarrow pequeno \end{cases}$ $\begin{array}{l} Dipolo \ Magnético \begin{cases} M_{1-} \ l=1 \ j^{\pi}=1/2^{+} \ q^{3} \\ M_{1+} \ l=1 \ j^{\pi}=3/2^{+} \ q^{3} \rightarrow dominante \end{cases}$

Limite estático $\frac{m_{\pi}}{M} \rightarrow 0$

Quadrupolo Elétrico $\{E_{1+} \ l=1 \ j^{\pi}=3/2^{+} \ q^{3} \rightarrow pequeno$

 $q \equiv |\mathbf{q}| \rightarrow momento \ do \ pion$

$$\frac{\sigma_E(\gamma n \to \pi^- p)}{\sigma_E(\gamma p \to \pi^+ n)} = \left(1 + \frac{m_\pi}{M}\right)^2 \cong 1.3$$

Fotoprodução de Mésons π^0 no limiar

$$M_{1+}$$
 $l = 1$ $j^{\pi} = 3/2^+$ $q^3 \rightarrow dominante$

ω(MeV)

Figure 9. Total cross section for the reaction $\gamma + p \rightarrow \pi^0 + p$ as function of photon energy. Mainz data (\Box) according to Beck *et al* (1990), Saciay data (\bigcirc) of Mazzucato *et al* (1986). The full curve is a fit of the experimental data while the broken curve is obtained with a constant E_{0+} of $-2.5 \times 10^{-3}/m_{\pi}$ and the same p-wave multipoles as for the full curve.

Fotoprodução total de Mésons π

 $\gamma N \rightarrow \pi N$ (fóton não polarizado)

Fotoprodução de Mésons π na Δ (1232)

D Drechsel and L Tiator

Figure 8. The total cross section for pion photoproduction as function of photon energy ω . (Data from Menze *et al* (1977) and Bagheri *et al* (1988), compared to calculations of Nozawa *et al* (1990).)

Fotoprodução de Mésons π na Δ (1232)

Espalhamento do Píon – Nucleon

 $\pi(q) + N(p) \rightarrow \pi(q') + N(p')$

Sistema CM **p** = -**q**

4-Momento

 $q^{\mu}(\omega_q, \mathbf{q}) \quad p^{\mu}(E_p, \mathbf{p})$

Energia

 $W = E + \omega$ $E = (\mathbf{q}^2 + M^2)^{1/2}$ $\omega = (\mathbf{q}^2 + m_{\pi}^2)^{1/2}$

Quadrado do 4-Momento Transferido

F(q´,q)

$$\mathbf{Q}^2 = (\mathbf{q}' - \mathbf{q})^2 = 2\mathbf{q}^2(1 - \cos(\theta))$$

Variáveis de Mandelstam

$$s = W^2 \quad t = -\mathbf{Q}^2$$

Espalhamento do Píon – Nucleon

As informações sobre espalhamento podem ser representados por <u>Deslocamento de Fase</u> δ_{α} com a Matriz-S em cada canal α definido na forma:

$$S_{\alpha}(\omega) = e^{2i\delta_{\alpha}(\omega)}$$
 $\alpha = (I, l, j = l \pm 1/2)$

 $\delta_{\alpha} \rightarrow \begin{cases} \pi N \to \pi N \ (Real) \ para \ T_{\alpha} \cong 174 MeV (Sistema \ Laborat \acute{o}rio) \\ \pi N \to \pi \pi N \ (imagin \acute{a}ria) \end{cases}$

Vamos tratar apenas da parte Real.

Espalhamento do Píon – Nucleon

A Matriz-S é relacionada com a amplitude de espalhamento pela relação:

$$S_{\alpha}(\omega) = e^{2i\delta_{\alpha}(\omega)}$$
 $f_{\alpha}(\omega) = \frac{1}{2i|\mathbf{q}|} [S_{\alpha}(\omega) - 1]$

Alternativamente f_{α} pode ser escrita na forma: $f_{\alpha}(\omega) = \frac{1}{|\mathbf{q}|} e^{i\delta_{\alpha}} \operatorname{sen}(\delta_{\alpha})$

Uma quantidade útil é a Matriz-K relacionada a Matriz-S na forma: $S_{\alpha} = \frac{1+i|\mathbf{q}|K_{\alpha}}{1-i|\mathbf{q}|K_{\alpha}}$ Na ausência de inelasticidades K_{α} é real e na forma: $K_{\alpha} = \frac{1}{|\mathbf{q}|} tan \delta_{\alpha}$

No limiar a Matriz-K define a constante de proporcionalidade: $a_{\alpha} = \lim_{|q| \to 0} |q|^{-2l} K_{\alpha}$ $\alpha = (l, l, j = l \pm 1/2)$

 $T_{\pi} < 300 MeV$

 π^+ p, π^- p dominado por $\Delta(1232)$

Mas, P-wave πN importante próximo do limiar.

Comprimento de espalhamento:

a(NN) ~ $10/m_{\pi}$ a(π N) ~ 0.1 $/m_{\pi}$

Espalhamento do Píon – Nucleon

Absorção de Fotopíons

Não conserva momentum.

$$\pi N \leftrightarrow N \quad p = (2Mm_{\pi})^{1/2} \cong 510 MeV/c$$

$$\pi NN \leftrightarrow NN$$
 $\omega \cong T_1 + T_2$ $\mathbf{q} = \mathbf{p}_1 + \mathbf{p}_2$ conserva momentum

$$\omega = m_{\pi} \mathbf{q} = 0$$
 $T_1 = T_2 = \frac{1}{2}m_{\pi}$ $\mathbf{p}_{rel.} = \mathbf{p}_1 = \mathbf{p}_2 = (Mm_{\pi})^{1/2} \cong 360 MeV/c$

Aplica-se o princípio do Balanço Detalhado

$$\sigma(d\pi^+ \to pp) = \frac{2}{3} \frac{p^2}{q^2} \begin{cases} \sigma(pp \to d\pi^+) \\ 2\sigma(pn \to d\pi^0) \end{cases}$$

Absorção de Fotopíons na região Δ(1232)

$$\Rightarrow pp) = \begin{cases} \left(\frac{3.5}{T^{1/2}\pi}MeV^{1/2} + \frac{3.3\Gamma^2_0}{(E - E_R) + \frac{\Gamma^2_0}{4}}\right) \text{mb} \\ E_R = 2136MeV \ \Gamma_0 = 150MeV \\ E = [(m_\pi + M_d)^2 + 2T_\pi M_d]^{1/2} \end{cases}$$

FIG. 4.6. The
$$\pi d$$
 absorption cross-section versus pion momentum and kinetic
energy. The solid curve corresponds to the phenomenological three-parameter fit
(4.42) with correct threshold behaviour and resonance shape. (From Ritchie
1983.)

$$\sigma_a(\omega) = \sigma_{\gamma,MQD}(\omega) + \sigma_{\gamma,\pi}(\omega)$$

$$\sigma(d\pi^+ \to pp) =$$

ſ

Absorção de mésons π no Núcleo

É tratado de forma análoga a ótica.

Absorção de mésons π no Núcleo

Pion absorption cross-section for various nuclei as a function of incident kinetic energy T_{π} . (From Ashery *et al.* 1981*b*.)

Foto Absorção via Quase-Deuteron (Modelo de Levinger)

Efeitos no núcleo devido a fotoabsorção.

Em energias intermediárias temos a formação de núcleo composto e seu posterior decaimento.

$$\sigma_{fotoabs.,canal} = \sigma_{NC} P_{canal}$$

Estudamos o canal de fissão onde
$$P_{canal} \equiv \frac{\Gamma_f}{\Sigma \Gamma_{canais}}$$

O núcleo composto é formado por um complexo e rápido processo denominado cascata intranuclear que deriva do núcleo original para uma coletividade de núcleos residuais com energia de excitação bem definida.

Extraction of Mean Energy Excitation from Experiments

Cálculo de Barachenkov com bins de 100MeV

Extraction of Mean Energy Excitation from Experiments

Cálculo de Barachenkov com ΔE de 20MeV - Frascati

FIG. 1. Electrofission cross section of ¹⁸²W (data points); the dashed lines are to guide the eye. The inset shows the corresponding unfolded photofission cross section (also shown in Fig. 2).

$$\sigma_{e,f} = \sum_{\lambda,l} \int_{0}^{E_e} \sigma_f^{\lambda,l}(\omega) N^{\lambda,l}(E_e,\omega) \frac{d\omega}{\omega}$$

 $\lambda \rightarrow Plétrica$ ou Magnética $l \rightarrow$ multipolaridade

A Seção de Choque de Fissão do núcleo composto é dada pela expressão:

$$\sigma^{f} = \sum_{A_{NC}Z_{NC},l} \int dE^{*} \sigma_{NC}(A_{NC}, Z_{NC}, E^{*}, l) \omega_{f}(A_{NC}, Z_{NC}, E^{*}, l)$$

A probabilidade de fissão do NC é:

 $\boldsymbol{\omega}_{f}(A_{NC}, \boldsymbol{Z}_{NC}, \boldsymbol{E}^{*}, \boldsymbol{l}) = \sum_{x} \boldsymbol{P}_{x} (\boldsymbol{E}^{*}, \boldsymbol{l}) \boldsymbol{\omega}_{x}^{f}(A_{NC}, \boldsymbol{Z}_{NC}, \boldsymbol{E}^{*}, \boldsymbol{l})$

 $P_x(E^*, l)$ é a probabilidade do núcleo emitir x partículas antes do estado fundamental

$$\sigma_{e,f} = \sum_{\lambda,l} \int_0^{E_e} \sigma_f^{\lambda,l}(\omega) N^{\lambda,l}(E_e,\omega) \frac{d\omega}{\omega}$$

 $\lambda \rightarrow Elétrica$ ou Magnética $l \rightarrow multipolaridade$

Extraction of Mean Energy Excitation from Experiments

CRISP - 184W

CRISP acompanha a multipolaridade E₀₊ e M₁₊ da fotoprodução de píons.

O meu CRISP não reproduz corretamente a energia de excitação média. Erra em > 3x.

CRISP do Ramón reproduz o Au sobre o Ru no cálculo de Barachenkov. A minha simulação do Au é próxima do Al Deveriam ser mais próximas do U!

Correções necessárias no CRISP.

Por que os níveis de energia de excitação não condizem com o esperado?

Propostas de correções via π - dêuteron.

0.5

1.0

15

2.0

2.5

Inserir um modelo fenomenológico tipo "Quase-Deuteron" competitivamente(Metrópolis) com o processo $\pi(q) + N(p) \rightarrow \pi(q') + N(p')$ na fase de cascata intranuclear.

$$\sigma(d\pi^{+} \to pp) = \begin{cases} \left(\frac{3.5}{T^{1/2}\pi}MeV^{1/2} + \frac{3.3\Gamma^{2}_{0}}{(E - E_{R}) + \frac{\Gamma^{2}_{0}}{4}}\right) \text{mb} \\ E_{R} = 2136MeV \ \Gamma_{0} = 150MeV \\ E = [(m_{\pi} + M_{d})^{2} + 2T_{\pi}M_{d}]^{1/2} \end{cases} \text{mb} \end{cases}$$

Propostas de correções via Quase Dêuteron.

Com base na distribuição de probabilidades pelo processo de Metrópolis modificamos o CRISP para incorporar os já inclusos processos $\pi p \in \pi n$ simultaneamente como $\pi d \rightarrow NN$.

PION LAB KINETIC ENERGY TT [MeV]

FIG. 4.1. The π d total cross-section in the $\Delta(1232)$ region compared to the sum of the π n and π p total cross-sections. The solid line labelled 'full theory' is given for comparison. It includes nucleon motion and double-scattering corrections as well as small additional terms. (From Pedroni *et al.* 1978.)

A questão do Nível de Fermi

$$\mathsf{n}(\mathbf{p}) = \begin{cases} 1 & \dots & |\mathbf{p}| \le \mathbf{p}_F \\ 0 & \dots & |\mathbf{p}| \ge \mathbf{p}_F \end{cases}$$

Degenerescência \rightarrow 2

 $p_F = 1.36 \text{fm}^{-1} \cong 2m_{\pi}$ $\varepsilon_F \cong 40 \text{MeV} \cong 0.3 m_{\pi}$ $\rho_0 = 0.17 \text{fm}^{-3} \cong 0.5 m_{\pi}^{-3}$

Principal ref. bibliográfica:

Pions and Nuclei T. Ericson & W. Weise Clarendon Press, Oxford - 1988

Dr. Sebastião Simionatto – Junho 2017 sesimiontt@gmail.com