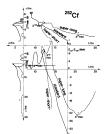
Brosal model

Scission Introduction Scissioning nuclei

Nuclear shapes


Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Brosa model concepts

Motahareh Abbasi

April 5, 2017

1/42

Table of contents

Brosal model

- Nuclear Scission
 - Introduction

- 2 What do scissioning nuclei look like?
 - Nuclear shapes

8 Fundamentals of random neck rupture

- Fundamentals
- Scission as a sequence of instabilities
- ④ Systems of low-energy fission
 - Standard, superlong and supershort
 - Channel graph
 - Tree of nuclear fission
 - Tables
 - Barriers
 - \bullet Standard splitting (Standard I and II)
 - Magic numbers of fission

Table of contents

Brosal model

Nuclear Scission

Introduction

Scissioning nuclei

Nuclear snapes

Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Nuclear Scission Introduction

2 What do scissioning nuclei look like?

8 Fundamentals of random neck rupture

4 Systems of low-energy fission

Nuclear Scission by Ulrich Brosa (Brosa model)

Brosal model

Nuclear Scission Introduction

- Scissioning nuclei
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

• Scission versus fission

- "Scission" denotes the "instant of rupture"
- do not discuss the complete process of fission

Nuclear Scission by Ulrich Brosa (Brosa model)

Brosal model

Nuclear Scission Introduction

- Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard

Scission versus fission

- "Scission" denotes the "instant of rupture"
- do not discuss the complete process of fission

Multichannel fission

- several exit channels in fission
- Leaving the compound state, the nucleus may choose between various paths to disintegrate.

Nuclear Scission by Ulrich Brosa (Brosa model)

Brosal model

Nuclear Scission Introduction

- Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

• Scission versus fission

- "Scission" denotes the "instant of rupture"
- do not discuss the complete process of fission

Multichannel fission

- several exit channels in fission
- Leaving the compound state, the nucleus may choose between various paths to disintegrate.

• Random neck rupture

- "rupture": the neck breaks suddenly "when" the nucleus stretches beyond the prescission shape
- "Random": not decided "where" the neck breaks

Table of contents

Brosal model

Nuclear Scission Introduction

Scissioning nuclei

Nuclear shapes

Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Nuclear Scission

What do scissioning nuclei look like?Nuclear shapes

3 Fundamentals of random neck rupture

4 Systems of low-energy fission

Nuclear shapes suitable for fission

Brosal model

Nuclear Scission Introduction

Scissioning nuclei Nuclear shapes

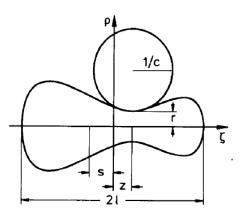
Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic

(i) Shape representation \Rightarrow 3 essential degrees of freedom :

- stretching of the nucleus
- thinning of the neck
- deformation to asymmetry
- (ii) "A single sphere and two fragments"
 - among allowed configurations

(iii) "Flatness of the neck"


• an independent variable

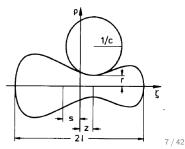
Shape parameters

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shapes
- Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

- Suitable set of shape parameters (degrees of freedom):
 - (l, r, z, c, s)

Shape parameters


Brosal model

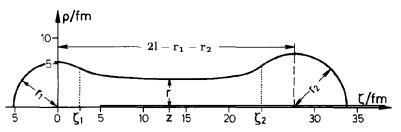
- Nuclear Scission Introduction Scissioning
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

- Semilength l : elongation of the nucleus
- r : radius of neck
- z : position on neck where neck is thinnest /

where shape is thickest if neck does not yet exist

- c : curvature of neck
- s : position of centroid

Real flat neck representation (prescission shape)


Brosal model

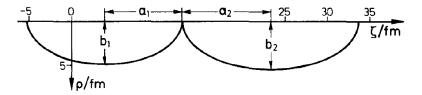
Nuclear shapes

Shape function:

 $\rho(\zeta) = \begin{cases} (r_1^2 - \zeta^2)^{\frac{1}{2}} & ; -r_1 \le \zeta \le \zeta_1 \\ r + a^2 c [\cosh(\frac{\zeta - z + l - r_1}{a}) - 1] & ; \zeta_1 \le \zeta \le \zeta_2 \\ (r_2^2 - [2l - r_1 - r_2 - \zeta]^2)^{\frac{1}{2}} & ; \zeta_2 \le \zeta \le 2l - r_1 \end{cases}$

 r_1 and r_2 : radii of the spherical heads ζ_1 and ζ_2 : transitional positions (where 3 parts of equation join) a : extension of neck

8 / 42

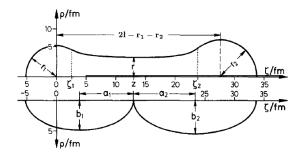

Brosal model

- Nuclear Scission Introduction
- Scissioning nuclei Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

- ${\ensuremath{\,\circ\,}}$ When a nucleus scissions \Rightarrow decays into fragments
- Newborn fragments are modelled as \Rightarrow

two spheroids in contact

(The strong surface tension quickly smooths all centers and edges.)

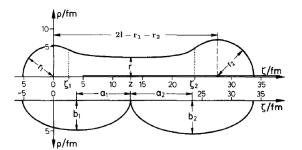

Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard

- These spheroids:
- major axes a_1 and a_2 :

fixed by the total length 2l and actual rupture point \boldsymbol{z}_r

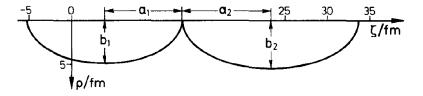
$$a_1 = \frac{1}{2}(r_1 + z_r)$$
 , $a_2 = l - \frac{1}{2}(r_1 + z_r)$


Brosal model

- Nuclear Scission Introduction Scissioning
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard

- These spheroids :
 - minor axes b_1 and b_2 :

followed from the volume conservation



Brosal model

- Nuclear Scission Introduction
- Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Applications

- Embedded spheroids are to estimate:
 - repulsion between the fragments
 - energies of deformation
 - fragments have immediately after formation

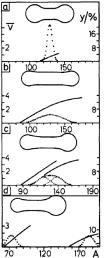
Table of contents

Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Nuclear shapes

Neck rupture

- Fundamental Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard


Nuclear Scission

- What do scissioning nuclei look like?
- 3 Fundamentals of random neck rupture
 - Fundamentals
 - Scission as a sequence of instabilities
- 4 Systems of low-energy fission

Brosal model

Slaves of prescission shape:

- mass yield Y(A)
- neutron multiplicity $\overline{\nu}$
- total kinetic energy \overline{TKE}

11 / 42

Nuclear Scission Introduction

Scissioning nuclei

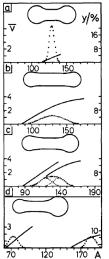
Nuclear shapes

Neck rupture Fundamentals

low-energy fission Channels Graph Tree Tables Barriers Standard

Brosal model

Nuclear Scission Introduction Scissioning nuclei


Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic • mass yields Y(A) (dotted lines)

and

Figure:

- neutron multiplicities ν
 (solid lines)
- as functions of fragment mass number A

11 / 42

Brosal model

Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupture

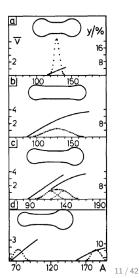
Fundamentals Scission

ow-energy fission Channels Graph Tree Tables Barriers Standard Magic

Part(a):

supershort prescission shape and its products

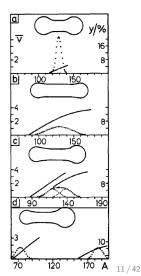
Part(b):


symmetric prescission shape

Part(c):

standard prescission shape

Part(d):

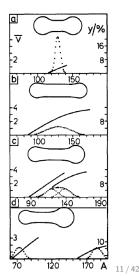

superasymmetrical prescission shape

Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

- Total kinetic energy TKE inverse measure of prescission shape's length
- ullet When rupture takes place \Rightarrow
 - Coulomb repulsion accelerates fragments
- Fragments high kinetic energy \Rightarrow short prescission shape
- Fragments low kinetic energy
 ⇒ long prescission shape

Brosal model


Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupture Fundamentals Scission low-energy fission Channels Graph Tree Tables Part (a, b)

 $\begin{array}{l} \text{Variance } \sigma^2 \text{ of mass yield } Y(A) \\ \text{measures} \Rightarrow \end{array}$

prescission shape's length

(Length of neck)

- Random neck rupture : produces different fragments by chopping neck
 - at different positions

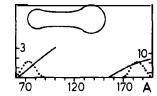
Brosal model

Fundamentals

- The larger the neck
 - \Rightarrow the more possibilities to chop it,

and

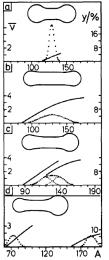
 \Rightarrow the larger variety of fragments


- the most frequent rupture
 - \Rightarrow where the neck is thinnest

Brosal model

Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupture Fundamentals Scission

fission Channels Graph Tree Tables Barriers Standard Magic Part(d)

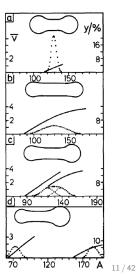


when prescission shape is asymmetric

 \Rightarrow neck is shifted away from center

• Consequently:

one light and one heavy fragment \Rightarrow a double-humped yield Y(A)

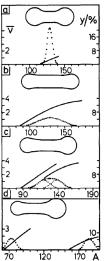

Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

• Part(d, c, b)

With decreasing asymmetry :

- the two humps merge
- \Rightarrow until a single bump remains


Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

• Part(a, b)

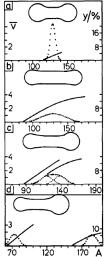
(solid lines)

- A large average neutron multiplicity $\overline{\nu}$
- is caused by :
 - " a long prescission shape "

Brosal model

Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupture Fundamentals Scission Iow-energy fission Channels Graph Tree Tables Barriers Part(b)

"symmetric" prescission shape :


gives rise to neutron multiplicity $\overline{\nu}$

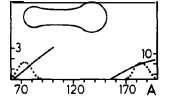
 \Rightarrow which increases steadily with fragment mass number A

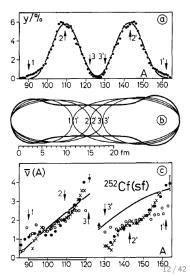
Part(d)

"asymmetric" prescission shape :

causes a sawtooth

11/42


Brosal model

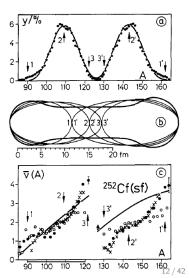

- Nuclear Scission Introduction Scissioning
- nuclei Nuclear chang
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

• Random neck rupture

and

• sawtooth shape of neutron multiplicity $\overline{\nu}$

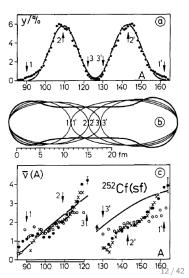
Brosal model


Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupture Fundamentals

low-energy fission Channels Graph Tree Tables Barriers Standard Magic Part(b)

some embedded spheroids

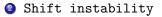
- $\bullet\ 2$ and 2' fragments
- \Rightarrow neck is the thinnest
- \Rightarrow Part(a):

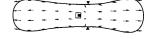

maxima of yield Y(A) of fragments production

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupture Fundamentals Scission Iow-energy fission Channels Graph
- Channels Graph Tree Tables Barriers
- ables Farriers tandard Aagic

- 3 and 3' fragments
- \Rightarrow Part(a):
 - rupture rarely happens (increased thickness of neck)
 - fragments are equal by mass but
 - very different by deformation




Scission as a sequence of instabilities

Brosal model

Scission

- Fission
 - 3 instabilities for evolution:
- Passing the barriers
 - the first step of fission

- Shortly behind the last barrier, the neck starts to appear.
- Shift instability arises, because for fission : nucleus has to change from a spheroidal to a necked-in configuration
- Sapillarity (Rayleigh) instability
 - accomplishes what the shift instability prepares
 - takes the dent where it is and deepens it until two fragments appear

Table of contents

Brosal model

Nuclear Scission Introduction Scissioning

Nuclear shapes

Neck rupture Fundamentals Scission

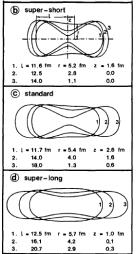
low-energy fission

Channels Graph Tree Tables Barriers Standard Magic

1 Nuclear Scission

2 What do scissioning nuclei look like?

8 Fundamentals of random neck rupture


④ Systems of low-energy fission

- Standard, superlong and supershort
- Channel graph
- Tree of nuclear fission
- Tables
- Barriers
- \bullet Standard splitting (Standard I and II)
- Magic numbers of fission

Brosal model

Nuclear Scission Introduction Scissioning nuclei Nuclear shapes Nuclear shapes Nuclear shapes Nuclear ushapes Scission Iow-energy fission Chanels Graph Tree

Prescission shapes:

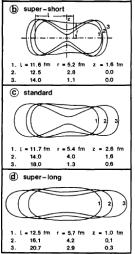
15 / 42

Brosal model

Nuclear Scission Introduction Scissioning

Nuclear shapes

Neck rupture Fundamentals Scission


low-energy fission

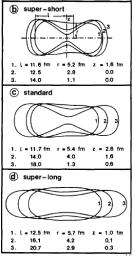
Channels

Graph Tree Tables Barriers Standard Magic

Prescission shapes:

- Standard (Part c)
 - slightly asymmetric
 - of "normal" length

Brosal model


- Nuclear Scission Introduction Scissioning nuclei Nuclear shape
- Neck rupture Fundamentals Scission
- low-energy fission

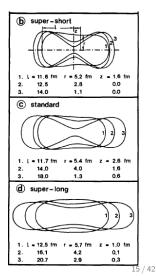
Channels

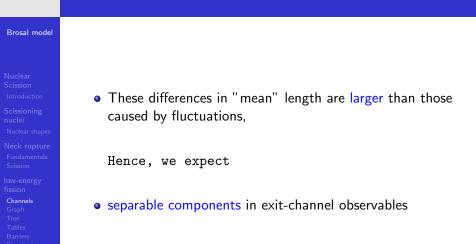
Graph Tree Tables Barriers Standard Magic

Prescission shapes:

- Standard (Part c)
 - slightly asymmetric
 - of "normal" length
- Superlong (Part d)
 - almost symmetric
 - longer than standard

Brosal model


- Nuclear Scission Introduction Scissioning nuclei Nuclear shape
- Fundamentals Scission
- low-energy fission


Channels

Graph Tree Tables Barriers Standard Magic

Prescission shapes:

- Standard (Part c)
 - slightly asymmetric
 - of "normal" length
- Superlong (Part d)
 - almost symmetric
 - longer than standard
- Supershort (Part b)
 - almost symmetric
 - shorter than standard

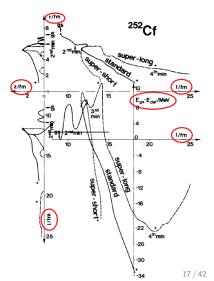
Brosal model

Nuclear Scission Introduction Scissioning

Nuclear shapes

Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers

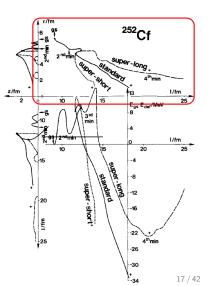

Channels traverse :

"space of deformation"

The simplest set of coordinates:

(l,r,z)

- \bullet semilength l
- neck radius r
- $\bullet\,$ location of the dent z

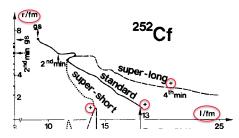


Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission
- Graph Tree Tables Barriers Standard

$\left(l,r\right)$ projection :

- Top right
- standard channel (full line)
- superlong channel (dashed)
- supershort channel (dotted)
- rooted in ground state gs

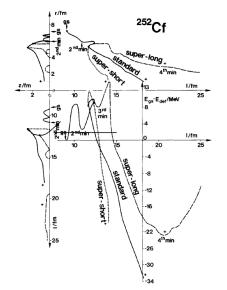


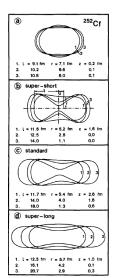
Brosal model

- Graph

(l,r) projection

- To initiate fission :
 - the nucleus lengthens (*l* increases)
 - its radius r decreases
 - shortly after 2^{nd} min :
 - "the big loop"
 - necleus stretches
 - thins its neck
 - until just behind the prescission shape at +
 - two fragments appear



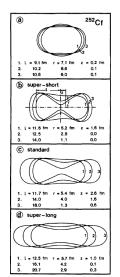

Brosal model

Nuclear Scission Introduction Scissioning nuclei

Neck rupture Fundamentals Scission

Iow-energy fission Channels Graph Tree Tables Barriers Standard

Brosal model


- Nuclear Scission Introduction Scissioning
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard

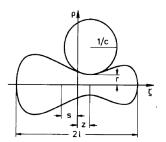
Part(a)

- ${\ensuremath{\,\circ}}$ evolution from gs to 2^{nd} min
- Part(b)
 - deformation in supershort fission channel
 - starting from bifurcation
 - ending at prescission (+)

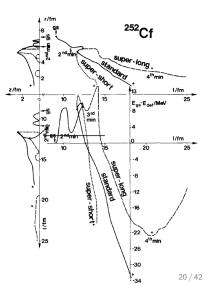
Part(c)

- similar changes along standard channel
 Part (d)
 - similar change along superlong channel

Brosal model

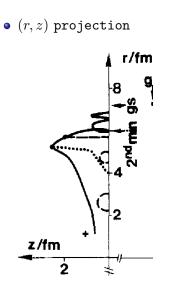

Nuclear Scission Introduction Scissioning nuclei Nuclear shape

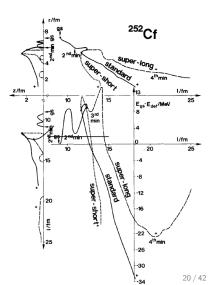
Neck rupture Fundamentals Scission


low-energy fission Channels Graph Tree Tables Barriers Standard Magic

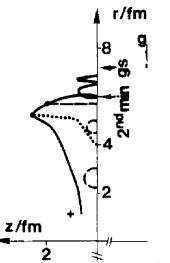
Symmetry and Asymmetry

• z : position on the neck where neck is thinnest




• Symmetry : z = 0

Graph

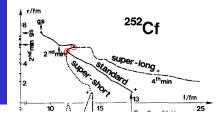


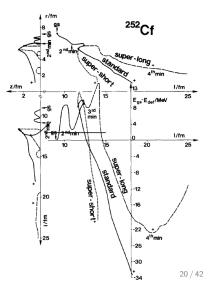
Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck ruptur Fundamentals Scission
- fission Channels Graph Tree Tables Barriers Standard Magic

(r,z) projection :

- gs : nearly symmetric (minor deviations)
- nucleus stays symmetric until big loop
- $z \approx 2.5$: asymmetry becomes sizable
- approach to scission : asymmetry decreases again


Brosal model


- Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rup<u>ture</u>
- Fundamentals Scission
- low-energy fission
- Channels Graph Tree Tables Barriers Standard

$\left(r,l\right)$ projection :

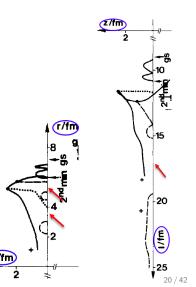
superlong & supershort channels

- branching from standard channel
- at "bifurcation points " (full circles)

Brosal model

Nuclear Scission Introduction Scissioning nuclei Nuclear shape: Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic

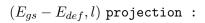

$(r,z)\ \&\ (z,l)\ {\tt projections}$

• trails of superlong & supershort channels

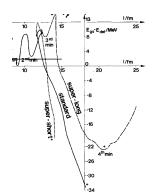
Due to

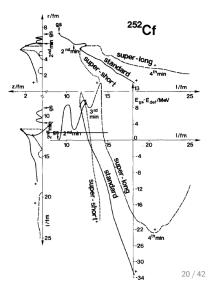
little deviation from symmetry (z = 0):

• their lines coincide with the axes



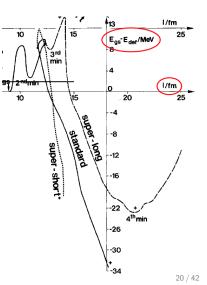
Brosal model


Nuclear shape


Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard

 Potential energy contained in the nucleus as it floats through one of channels



Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard

$(E_{gs}-E_{def},l)$ projection :

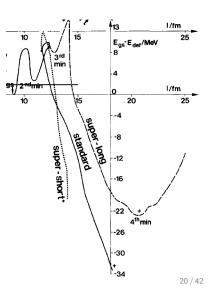
- nucleus starts at gs with energy 0 (normalized)
- climbs the first barrier at $l\approx 10(fm)$
- falls into the 2^{nd} min
- rises to the second barrier
- descends to scission

Brosal model

$$(E_{gs}-E_{def},l)$$
 projection :

Scission Introduction

Scissioning nuclei


Nuclear shapes

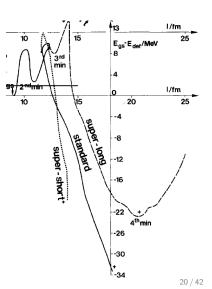
Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic Standard channel

• double-humped barrier

second minimum

Brosal model


Neck rupture Fundamentals Scission

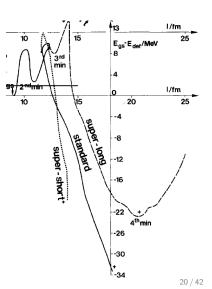
low-energy fission Channels Graph Tree Tables Barriers Standard

$$(E_{gs}-E_{def},l)$$
 projection :

Superlong channel (^{252}Cf)

- barrier at $l \approx 14(fm)$
- higher than any of the standard barriers

Brosal model


Neck rupture Fundamentals Scission

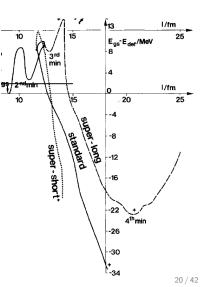
low-energy fission Channels **Graph** Tree Tables Barriers Standard

$(E_{gs} - E_{def}, l)$ projection

Supershort channel

- barrier at $l \approx 12(fm)$
- higher than any of the standard barriers

Brosal model

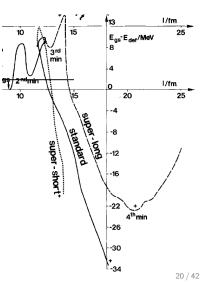

low-energy fission Channels Graph

Tree Tables Barriers Standard

$$(E_{gs} - E_{def}, l)$$
 projection

That's why :

- standard channel
 - is much more used than
- superlong channel



Brosal model

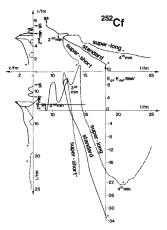
- Nuclear Scission Introduction Scissioning nuclei Nuclear shape
- Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Role of bifurcation points

- divide the flux to
 various prescission shapes
- in corporation with barriers decide the distribution of exit-channel observables

Brosal model

- Nuclear Scission Introduction
- Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard


 measure asymmetry z of various prescission shapes

measure semilength l

- With these data :
 - construct shapes with flat necks
 - find the yield Y(A)
 - other exit-channel variables

Finally :

• compare with experiments

Brosal model

- Nuclear Scission Introduction Scissioning
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables

- Potential-energy calculations \Rightarrow
 - prescission shapes
 - Prescission shapes \Rightarrow
 - individual yields $Y_c(A)$
 - individual total kinetic energies $\overline{TKE}_c(A)$
 - individual neutron multiplicities $\overline{\nu}_c(A)$
 - subscript c labels various channels.

Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Nock rupturo
- Fundamentals Scission
- low-energy fission Channels Graph
- Tables Barriers
- Standard

• To compare with measurements, we form superpositions:

$$\begin{split} Y(A) &= \sum_{c} p_{c} Y_{c}(A) \qquad (\texttt{p}_{\texttt{c}}:\texttt{channel probability}) \\ \overline{TKE}(A) &= \sum_{c} p_{c} \overline{TKE}_{c}(A) Y_{c}(A) / Y(A) \\ \overline{\nu}(A) &= \sum_{c} p_{c} \overline{\nu}_{c}(A) Y_{c}(A) / Y(A) \end{split}$$

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck ruptur
- Fundamentals Scission
- iow-energ fission Channels Graph Tree Tables Barriers Standard

• To compare with measurements, we form superpositions:

$$\begin{split} Y(A) &= \sum_{c} p_{c} Y_{c}(A) \qquad (\texttt{p}_{\texttt{c}}:\texttt{channel probability}) \\ \overline{TKE}(A) &= \sum_{c} p_{c} \, \overline{TKE}_{c}(A) \, Y_{c}(A) / Y(A) \\ \overline{\nu}(A) &= \sum_{c} p_{c} \, \overline{\nu}_{c}(A) \, Y_{c}(A) / Y(A) \end{split}$$

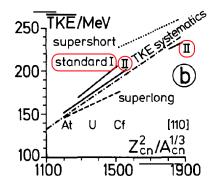
For information reduction, without loss of accuracy :

$$\begin{split} Y_{c}(A) &= \frac{1}{(2\pi\sigma_{A,c}^{2})^{1/2}} [exp(-\frac{(A-\overline{A}_{c})^{2}}{2\sigma_{A,c}^{2}}) + exp(-\frac{(A-A_{cn}+\overline{A}_{c})^{2}}{2\sigma_{A,c}^{2}})]\\ \overline{TKE}_{c}(A) &= \frac{A(A_{cn}-A)}{\overline{A}_{c}(A_{cn}-\overline{A}_{c}) - \sigma_{A,c}^{2}} \overline{TKE}_{c} \end{split}$$

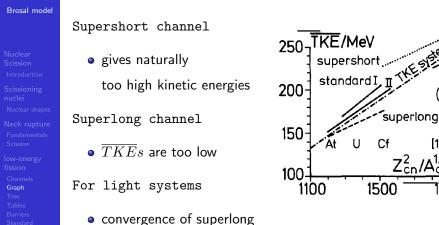
 \overline{A}_c : average mass , $\sigma^2_{A,c}$: mass variance , \overline{TKE}_c : average total kinetic energy \overline{A}_c , $\sigma^2_{A,c}$, \overline{TKE}_c : byproducts of random neck rupture

Mean total kinetic energy (\overline{TKE})

Brosal model


- Nuclear Scission Introduction
- nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Standard channel

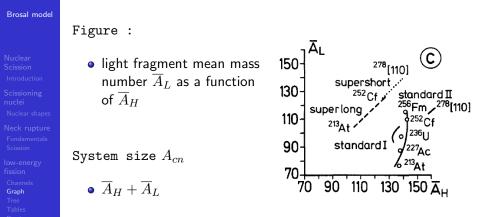

- splits into I and II
- stays close to overall \overline{TKE} systematics (dash-dotted line)

Standard II

- closeness to overall \overline{TKE} systematics
- the most abundant channel in most actinides

Mean total kinetic energy (TKE)

 \overline{TKE} to overall \overline{TKE}


systematics

[110]

nnp

 Z_{cn}^2/A

Mean mass number \overline{A}_H of heavy fragments

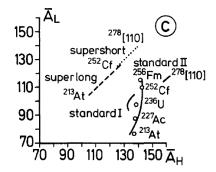
Mean mass number \overline{A}_H of heavy fragments

Brosal model

Nuclear Scission Introduction Scissioning nuclei Nuclear shape

Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic


Standard channel

particularly standard ${\rm II}$

• remains nearly constant at $\overline{A}_H \approx 140$

Superlong & supershort channels

- symmetrical fission
 - $(\overline{A}_H \approx \overline{A}_L)$

Channel probabilities P_c

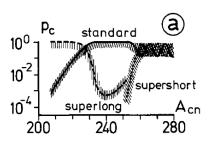
Brosal model

Nuclear Scission Introduction Scissioning nuclei

Neck rupture Fundamentals

low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Supershort channel

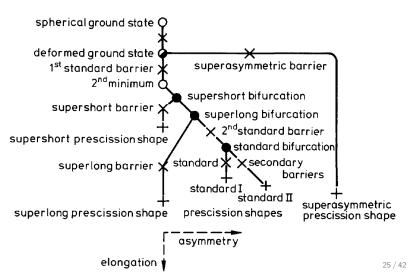

• disappears for systems smaller than $A_{cn} \approx 250$

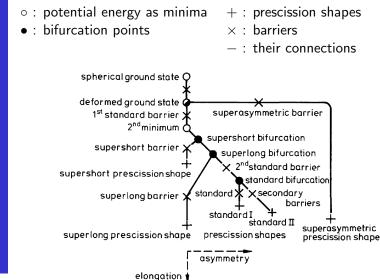
Superlong channel

• breaks up for systems larger than $A_{cn} \approx 260$

Standard channel

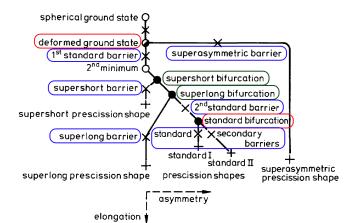
• exists everywhere


Brosal model



• Cayley tree of nuclear fission

Brosal model


Tree

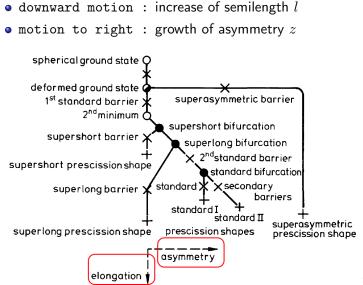
Brosal model

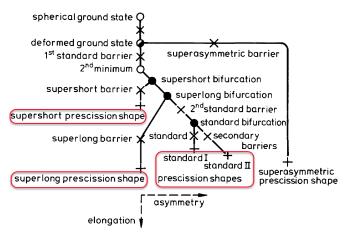
- Nuclear Scission Introduction Scissioning nuclei Nuclear shap
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables
- Barriers Standard
- Magic


- ${\ensuremath{\, \bullet }}$ nucleus starts to fission from the deformed ground state
- overcome barriers
- pass bifurcation points

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupture
- Fundamentals Scission
- low-energy fission Channels Graph Tree
- Table
- Barriers Standard
- Magic


- choose different channels
 - rupture at different prescssion shapes


fission Channels Graph Tree Tables Barriers Standard Magic

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck ruptur
- Fundamentals Scission
- fission Channels Graph Tree Tables
- Barriers Standard
- Magic

- standard channel : slightly asymmetric
- superlong & supershort channels : almost symmetric

Computed ground states

Brosal model

- Nuclear Scission Introduction Scissioning
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree **Tables** Barriers
- e Ground stat
 - Ground state energies

Shape

$$E_{gs}^t$$
 & E_{gs}^e

 accuracy of Strutinsky's method

Nucleus	<i>l</i> (fm)	r (fm)	z (fm)	c (fm)	s (fm)	E_{gs}^{1} (MeV)	E_{gs}° (MeV)
²¹⁰ Po	7.3	7.3	0.0	-7.2	0.0	1644.4	1645.2
²¹³ At	7.3	7.3	0.2	-7.2	0.1	1659.2	1659.3
²²⁵ Ra ²²⁷ Ra	7.4 7.3	7.5 7.5	0.1 0.1	-7.2 -7.2	0.1 0.1	1724.4 1735.3	1725.2 1736.2
²²⁶ Ac ²²⁷ Ac ²²⁸ Ac	8.8 9.0 9.0	7.2 7.2 7.1	1.1 1.0 0.5	-8.2 -8.1 -7.8	0.5 0.3 0.2	1728.8 1735.6 1740.9	1730.2 1736.7 1741.8
²³² Th	9.1	7.1	0.3	-7.5	0.1	1765.9	1766.7
²³³ Pa	9.1	7.2	0.0	-8.0	0.0	1771.6	1772.0
²³⁶ U	9.1	7.1	0.6	-7.7	0.2	1789.6	1790.4
²³⁴ Np ²³⁶ Np ²³⁹ Np	9.1 9.1 9.2	7.1 7.1 7.1	0.7 0.6 0.5	-7.8 -7.4 -7.6	0.2 0.2 0.2	1775.0 1787.6 1806.5	1776.0 1788.7 1807.0
²³⁶ Pu ²³⁸ Pu ²⁴⁰ Pu ²⁴² Pu	9.2 9.1 9.1 9.0	7.2 7.1 7.1 7.1	0.1 0.2 0.3 0.0	-7.9 -7.2 -7.2 -7.3	0.1 0.1 0.1 0.0	1787.3 1800.3 1812.7 1824.5	1788.4 1801.3 1813.5 1825.0
²⁴⁰ Am ²⁴³ Am ²⁴⁵ Am	9.0 9.0 9.0	7.1 7.1 7.1	0.2 0.0 0.3	-6.6 -6.4 -6.6	0.1 0.0 0.1	1810.2 1829.5 1841.0	1811.3 1829.9 1841.3

Computed ground states

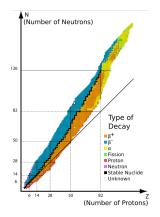
Brosal model

- transition from spherical to deformed gs : not too far from ${}^{208}_{82}Pb_{126}$: $l\approx7.3$ to $l\approx9.0$

Nucleus	<i>l</i> (fm)	r (fm)	z (fm)	c (fm)	s (fm)	E_{gs}^{t} (MeV)	E_{gs}^{e} (MeV)
210 Po	7.3	7.3	0.0	-7.2	0.0	1644.4	1645.2
²¹³ At	7.3	7.3	0.2	-7.2	0.1	1659.2	1659.3
²²⁵ Ra ²²⁷ Ra	7.4 7.3	7.5 7.5	0.1 0.1	-7.2 -7.2	0.1 0.1	1724.4 1735.3	1725.2 1736.2
²²⁶ Ac ²²⁷ Ac ²²⁸ Ac	8.8 9.0 9.0	7.2 7.2 7.1	1.1 1.0 0.5	-8.2 -8.1 -7.8	0.5 0.3 0.2	1728.8 1735.6 1740.9	1730.2 1736.7 1741.8
²³² Th	9.1	7.1	0.3	-7.5	0.1	1765.9	1766.7
²³³ Pa	9.1	7.2	0.0	-8.0	0.0	1771.6	1772.0
²³⁶ U	9.1	7.1	0.6	-7.7	0.2	1789.6	1790.4
²³⁴ Np ²³⁶ Np ²³⁹ Np	9.1 9.1 9.2	7.1 7.1 7.1	0.7 0.6 0.5	-7.8 -7.4 -7.6	0.2 0.2 0.2	1775.0 1787.6 1806.5	1776.0 1788.7 1807.0
²³⁶ Pu ²³⁸ Pu ²⁴⁰ Pu ²⁴² Pu	9.2 9.1 9.1 9.0	7.2 7.1 7.1 7.1	0.1 0.2 0.3 0.0	-7.9 -7.2 -7.2 -7.3	0.1 0.1 0.1 0.0	1787.3 1800.3 1812.7 1824.5	1788.4 1801.3 1813.5 1825.0

26 / 42

Computed ground states


Brosal model

- Nuclear Scission Introduction Scissioning
- nuclei Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables
- Barriers
- Standard Magic

• transition from spherical to deformed gs : not too far from $^{208}_{82}Pb_{126}$: $l\approx7.3$ to $l\approx9.0$

Pb :

- doubly magic spherical nucleus
- the heaviest stable element
- no other isotopes with Z>82 are stable

Stanndard barriers B_{st}

Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard

- All nuclei listed:
 - a double-humped standard barrier
- higher barrier
 - is presented

Nucleus	l (fm)	r (fm)	z (fm)	c (fm)	s (fm)	B_{st}^{t} (MeV)	B ^e _{st} (MeV)
²¹⁰ Po	12.4	4.2	3.1	4.7	-1.2	23.8 (2nd)	24.4
²¹³ At	12.6	3.9	2.6	6.0	-1.5	20.8 (2nd)	19.8
²²⁵ Ra ²²⁷ Ra	11.2 11.2	5.2 5.4	3.1 2.9	1.4 0.9	-0.4 -0.4	8.1 (2nd) 7.4 (2nd)	$\begin{array}{c} 6.5\pm0.5\\ 8.0\end{array}$
²²⁶ Ac ²²⁷ Ac ²²⁸ Ac	11.3 11.3 11.3	5.3 5.3 5.4	3.1 2.9 2.8	0.8 1.0 0.6	-0.4 -0.3 -0.4	7.8 (2nd) 7.3 (2nd) 7.5 (2nd)	8.0 7.3 7.2
²³² Th	11.2	5.4	2.9	0.5	-0.4	7.2 (2nd)	6.2 ± 0.2 (2nd)
²³³ Pa	11.3	5.4	2.8	0.8	-0.4	7.6 (2nd)	6.1 (1st)
²³⁶ U	11.3	5.0	3.0	1.8	-0.9	6.7 (2nd)	5.6 ± 0.2 (1st)
²³⁴ Np ²³⁶ Np ²³⁹ Np	11.6 11.2 11.3	5.2 5.3 5.3	2.9 3.2 3.2	1.1 0.8 0.9	$-0.6 \\ -0.5 \\ -0.6$	6.5 (2nd) 6.6 (2nd) 7.3 (2nd)	5.5 ± 0.2 (1st) 5.8 ± 0.2 (1st) 5.9 ± 0.2 (1st)
²³⁸ Pu ²⁴⁰ Pu	11.6 11.2	5.3 5.3	2.8 3.2	1.0 0.8	$-0.5 \\ -0.6$	6.4 (2nd) 7.0 (2nd)	5.5 ± 0.2 (1st) 5.6 ± 0.2 (1st)
²⁴⁰ Am ²⁴³ Am ²⁴⁵ Am	11.4 11.4 11.3	5.3 5.3 5.4	3.2 3.2 3.0	0.8 0.8 0.8	-0.5 -0.5 -0.5	7.2 (2nd) 7.4 (2nd) 6.8 (2nd)	$\begin{array}{c} 6.5 \pm 0.2 \ (1st) \\ 5.9 \pm 0.2 \ (1st) \\ 5.9 \pm 0.2 \ (1st) \end{array}$
242 Cm 244 Cm 248 Cm	10.5 10.4 10.2	6.5 6.5 6.5	0.3 0.5 0.3	-3.5 -3.0 -1.9	0.0 0.2 0.0	6.6 (1st) 6.7 (1st) 6.5 (1st)	5.8 ± 0.4 (1st) 5.8 ± 0.2 (1st) 5.7 ± 0.2 (1st)
²⁵² Cf	10.1	6.6	0.0	-2.2	0.0	6.9 (1st)	5.3 (1st)
255 Es	10.4	6.5	0.5	-2.2	0.1	7.5 (1st)	
²⁵⁶ Fm ²⁵⁸ Fm ²⁵⁹ Fm	10.3 10.4 10.6	6.6 6.5 6.5	0.4 0.5 0.4	-2.8 -2.3 -1.8	0.1 0.1 0.1	7.4 (1st) 6.8 (1st) 7.3 (1st)	27

Stanndard barriers B_{st}

Brosal model

Tables

٥	In lighter nuclei:	Nucleus	l (fm)	r (fm)	z (fm)	c (fm)	s (fm)	B_{st}^{t} (MeV)	B ^e _{st} (MeV)
	8	²¹⁰ Po	12.4	4.2	3.1	4.7	-1.2	23.8 (2nd)	24.4
	second hump	²¹³ At	12.6	3.9	2.6	6.0	-1.5	20.8 (2nd)	19.8
		225 Ra	11.2	5.2	3.1	1.4	-0.4	8.1 (2nd)	6.5 ± 0.5
	dominates	²²⁷ Ra	11.2	5.4	2.9	0.9	-0.4	7.4 (2nd)	8.0
		226Ac	11.3	5.3	3.1	0.8	-0.4	7.8 (2nd)	8.0
	1	²²⁷ Ac ²²⁸ Ac	11.3 11.3	5.3 5.4	2.9 2.8	1.0 0.6	-0.3 -0.4	7.3 (2nd) 7.5 (2nd)	7.3 7.2
	located at larger	232 Th	11.2	5.4	2.9	0.5	-0.4	7.2 (2nd)	6.2 ± 0.2 (2nd)
	values of l								
		²³³ Pa	11.3	5.4	2.8	0.8	-0.4	7.6 (2nd)	6.1 (1st)
		²³⁶ U	11.3	5.0	3.0	1.8	-0.9	6.7 (2nd)	5.6 ± 0.2 (1st)
		234 Np	11.6	5.2	2.9	1.1	-0.6	6.5 (2nd)	5.5 ± 0.2 (1st)
		²³⁶ Np ²³⁹ Np	11.2 11.3	5.3 5.3	3.2 3.2	0.8 0.9	-0.5 -0.6	6.6 (2nd) 7.3 (2nd)	5.8 ± 0.2 (1st) 5.9 ± 0.2 (1st)
٠	In heavier nuclei:								
-		²³⁸ Pu ²⁴⁰ Pu	11.6 11.2	5.3 5.3	2.8 3.2	1.0 0.8	-0.5 -0.6	6.4 (2nd) 7.0 (2nd)	5.5 ± 0.2 (1st) 5.6 ± 0.2 (1st)
	Court Is and a								
	first hump	²⁴⁰ Am ²⁴³ Am	11.4 11.4	5.3 5.3	3.2 3.2	0.8 0.8	-0.5 -0.5	7.2 (2nd) 7.4 (2nd)	6.5 ± 0.2 (1st) 5.9 ± 0.2 (1st)
	dominates	²⁴⁵ Am	11.3	5.4	3.0	0.8	-0.5	6.8 (2nd)	5.9 ± 0.2 (1st)
	uommates	²⁴² Cm	10.5	6.5	0.3	-3.5	0.0	6.6 (1st)	5.8 ± 0.4 (1st)
		244Cm	10.4	6.5	0.5	-3.0	0.2	6.7 (1st)	5.8 ± 0.2 (1st)
	located at smaller	²⁴⁸ Cm	10.2	6.5	0.3	-1.9	0.0	6.5 (1st)	5.7 ± 0.2 (1st)
		²⁵² Cf	10.1	6.6	0.0	-2.2	0.0	6.9 (1st)	5.3 (1st)
	values of l	255 Es	10.4	6.5	0.5	-2.2	0.1	7.5 (1st)	
		²⁵⁶ Fm	10.3	6.6	0.4	-2.8	0.1	7.4 (1st)	
		258 Fm	10.4	6.5	0.5	-2.3	0.1	6.8 (1st)	
		259Fm	10.6	6.5	0.4	-1.8	0.1	7.3 (1st)	27

27 / 42

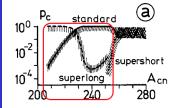
Superlong barriers B_{sl}

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape
- Fundamentals Scission
- low-energy fission Channels Graph Tree **Tables** Barriers Standard

with mass number increase:

- superlong barrier shifts to larger values of l
- (opposite to
 - standard barrier)


Nucleus	<i>l</i> (fm)	r (fm)	z (fm)	c (fm)	s (fm)	B_{sl}^{t} (MeV)	B_{sl}^{e} (MeV)
²¹⁰ Po	11.4	5.1	0.0	1.9	0.0	21.6	21.3
213At	11.4	5.1	0.1	1.3	0.0	18.8	17.2
²²⁵ Ra	12.2	5.2	0.4	-0.5	0.0	12.6	6.7 ± 0.5
²²⁷ Ra	11.8	5.2	0.1	-0.1	0.0	13.0	9.0
226Ac	12.1	5.3	0.2	0.0	0.0	11.6	9.2
227Ac	11.8	5.2	0.2	-0.1	0.0	11.2	8.4-8.5
²²⁸ Ac	11.8	5.2	0.6	-0.3	0.0	12.2	9.2
²³² Th	12.7	5.6	0.0	0.0	0.0	11.8	8.5-8.7
²³³ Pa	12.6	5.5	1.3	-1.7	0.0	11.6	9.0
²³⁶ U	12.4	5.5	0.7	-1.3	0.0	10.9	
²³⁴ Np	12.6	5.5	1.0	-1.8	0.0	9.7	6.8
²³⁶ Np	12.5	5.5	0.7	-1.8	0.0	10.4	7.4
²³⁹ Np	12.4	5.5	0.5	-0.9	0.1	10.2	8.2
²³⁸ Pu	12.5	5.5	1.0	-1.2	0.2	9.0	7.6 ± 0.2
²⁴⁰ Pu	12.5	5.5	0.6	-1.2	0.0	9.2	
²⁴⁰ Am	12.5	5.5	0.7	-1.4	0.0	9.0	8.7 ± 0.2
243Am	12.5	5.5	1.0	-0.8	0.0	8.7	8.4 ± 0.2
²⁴⁵ Am	12.5	5.6	0.7	-0.7	0.0	8.7	8.5 ± 0.2
²⁴² Cm	12.5	5.5	1.0	-1.3	0.0	7.5	8.0 ± 0.4
²⁴⁴ Cm	12.5	5.5	0.9	-0.9	0.1	8.0	8.1 ± 0.2
²⁵² Cf	12.6	5.5	0.0	0.6	0.0	7.5	

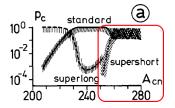
Superlong barriers B_{sl}

Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels
- Graph Tree Tables Barrier
- Barriers Standard

- Superlong channel
 - is "broken"
 - in heavy nuclei (such as ^{256}Fm)

Nucleus	<i>l</i> (fm)	r (fm)	z (fm)	c (fm)	s (fm)	B_{sl}^{t} (MeV)	B_{s1}^{e} (MeV)
210 Po	11.4	5.1	0.0	1.9	0.0	21.6	21.3
²¹³ At	11.4	5.1	0.1	1.3	0.0	18.8	17.2
²²⁵ Ra ²²⁷ Ra	12.2 11.8	5.2 5.2	0.4 0.1	-0.5 -0.1	0.0 0.0	12.6 13.0	$\begin{array}{c} 6.7\pm0.5\\ 9.0\end{array}$
226Ac 227Ac 228Ac	12.1 11.8 11.8	5.3 5.2 5.2	0.2 0.2 0.6	0.0 -0.1 -0.3	0.0 0.0 0.0	11.6 11.2 12.2	9.2 8.4-8.5 9.2
²³² Th	12.7	5.6	0.0	0.0	0.0	11.8	8.5-8.7
²³³ Pa	12.6	5.5	1.3	-1.7	0.0	11.6	9.0
²³⁶ U	12.4	5.5	0.7	-1.3	0.0	10.9	
²³⁴ Np ²³⁶ Np ²³⁹ Np	12.6 12.5 12.4	5.5 5.5 5.5	1.0 0.7 0.5	-1.8 -1.8 -0.9	0.0 0.0 0.1	9.7 10.4 10.2	6.8 7.4 8.2
²³⁸ Pu ²⁴⁰ Pu	12.5 12.5	5.5 5.5	1.0 0.6	$-1.2 \\ -1.2$	0.2 0.0	9.0 9.2	7.6 ± 0.2
²⁴⁰ Am ²⁴³ Am ²⁴⁵ Am	12.5 12.5 12.5	5.5 5.5 5.6	0.7 1.0 0.7	-1.4 -0.8 -0.7	0.0 0.0 0.0	9.0 8.7 8.7	8.7 ± 0.2 8.4 ± 0.2 8.5 ± 0.2
²⁴² Cm ²⁴⁴ Cm	12.5 12.5	5.5 5.5	1.0 0.9	-1.3 -0.9	0.0 0.1	7.5 8.0	8.0 ± 0.4 8.1 ± 0.2
²⁵² Cf	12.6	5.5	0.0	0.6	0.0	7.5	


Supershort barriers B_{ss}

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape
- Fundamentals Scission
- low-energy fission Channels Graph Tree **Tables** Barriers Standard Magic

Supershort channel

does not exist in light nuclei

Nucleus	Barrier	l (fm)	r (fm)	z (fm)	c (fm)	s (fm)	$B^{t}(MeV)$
252Cf	supershort	12.6	3.8	0.0	11.1	0.0	6.6
	standard (2nd)	12.0	5.5	2.8	0.6	-0.3	5.7
255Es	supershort	12.4	4.4	0.1	10.8	0.0	5.2
	standard (2nd)	11.8	5.5	2.6	0.9	-0.3	5.4
²⁵⁶ Fm	supershort	11.7	5.2	0.1	6.5	0.0	3.8
	standard (2nd)	12.0	5.5	2.8	0.4	-0.3	4.4
²⁵⁸ Fm	supershort	11.7	5.2	0.0	6.5	0.0	3.2
	standard (2nd)	12.0	5.5	2.7	0.6	-0.4	4.0
²⁵⁹ Fm	supershort	11.7	5.3	0.1	5.8	0.0	2.9
	standard (2nd)	12.2	5.4	2.9	0.7	-0.5	4.1
259 Md	supershort	11.8	5.1	0.0	7.5	0.0	2.9
	standard (2nd)	12.3	5.4	2.9	0.7	-0.5	3.1
²⁶⁰ Md	supershort	11.7	5.2	0.0	6.5	0.0	2.4
	standard (2nd)	12.0	5.5	2.9	0.5	-0.4	3.2
²⁵⁸ No	supershort	11.8	5.1	0.0	7.3	0.0	2.9
	standard (2nd)	11.9	5.6	2.3	0.6	-0.3	2.7
260[104]	supershort	11.5	5.5	0.1	4.5	0.0	1.4
7-0.1	standard (2nd)	12.4	5.4	2.9	0.5	-0.5	1.2
272[108]	supershort	12.5	5.4	0.2	4.3	0.0	-2.6
	standard (2nd)	12.9	5.5	2.3	0.8	-0.6	-2.0

Supershort barriers B_{ss}

Brosal model

Nuclear Scission Introduction Scissioning nuclei

Neck rupture Fundamentals

low-energy fission Channels Graph Tree Tables Barriers Standard Magic Supershort barriers are "lower" than Standard barriers (except for ²⁵²Cf)

Nucleus	Barrier	l (fm)	r (fm)	z (fm)	c (fm)	s (fm)	B^{t} (MeV)
(252Cf)	supershort	12.6	3.8	0.0	11.1	0.0	6.6
\bigcirc	standard (2nd)	12.0	5.5	2.8	0.6	-0.3	5.7
255Es	supershort	12.4	4.4	0.1	10.8	0.0	5.2
	standard (2nd)	11.8	5.5	2.6	0.9	-0.3	5.4
²⁵⁶ Fm	supershort	11.7	5.2	0.1	6.5	0.0	3.8
	standard (2nd)	12.0	5.5	2.8	0.4	-0.3	4.4
²⁵⁸ Fm	supershort	11.7	5.2	0.0	6.5	0.0	3.2
	standard (2nd)	12.0	5.5	2.7	0.6	-0.4	4.0
²⁵⁹ Fm	supershort	11.7	5.3	0.1	5.8	0.0	2.9
	standard (2nd)	12.2	5.4	2.9	0.7	-0.5	4.1
259Md	supershort	11.8	5.1	0.0	7.5	0.0	2.9
	standard (2nd)	12.3	5.4	2.9	0.7	-0.5	3.1
²⁶⁰ Md	supershort	11.7	5.2	0.0	6.5	0.0	2.4
	standard (2nd)	12.0	5.5	2.9	0.5	-0.4	3.2
²⁵⁸ No	supershort	11.8	5.1	0.0	7.3	0.0	2.9
	standard (2nd)	11.9	5.6	2.3	0.6	-0.3	2.7
²⁶⁰ [104]	supershort	11.5	5.5	0.1	4.5	0.0	1.4
	standard (2nd)	12.4	5.4	2.9	0.5	-0.5	1.2
272[108]	supershort	12.5	5.4	0.2	4.3	0.0	-2.6
	standard (2nd)	12.9	5.5	2.3	0.8	-0.6	-2.0

Supershort barriers B_{ss}

Brosal model

• Lower than both 1^{st} and 2^{nd} standard barriers

Nucleus	l (fm)	r (fm)	z (fm)	c (fm)	s (fm)	B_{et}^{t} (MeV)	Nucleus	Barrier	l (fm)	r (fm)	z (fm)	c (fm)	s (fm)	B^{t} (MeV)
	<i>i</i> (iiii)	7 (1111)	2 (111)	e (uni)	3 (IIII)	D_{st} (MeV)	252Cf	supershort	12.6	3.8	0.0	11.1	0.0	6.6
252Cf	10.1	6.6	0.0	-2.2	0.0	6.9 (1st)		standard (2nd)	12.0	5.5	2.8	0.6	-0.3	5.7
255Es	10.4	6.5	0.5	-2.2	0.1	7.5 (1st)	255Es	supershort standard (2nd)	12.4 11.8	4.4 5.5	0.1 2.6	10.8 0.9	0.0 -0.3	5.2
²⁵⁶ Fm ²⁵⁸ Fm	10.3 10.4	6.6 6.5	0.4 0.5	-2.8 -2.3	0.1 0.1	7.4 (1st) 6.8 (1st)	²⁵⁶ Fm	supershort	11.7	5.2	0.1	6.5	0.0	3.8
²⁵⁹ Fm	10.4	6.5	0.3	-1.8	0.1	7.3 (1st)	²⁵⁸ Fm	standard (2nd) supershort	12.0 11.7	5.5 5.2	2.8 0.0	0.4 6.5	-0.3 0.0	4.4 3.2
²⁵⁹ Md ²⁶⁰ Md	10.5 10.7	6.8 6.6	0.3 0.2	-3.9 -2.2	0.1 0.0	6.9 (1st) 7.2 (1st)	²⁵⁹ Fm	standard (2nd) supershort	12.0 11.7	5.5 5.3	2.7 0.1	0.6 5.8	-0.4 0.0	4.0 2.9
258No	10.6	6.8	0.4	-4.1	0.1	7.4 (1st)	²⁵⁹ Md	standard (2nd) supershort	12.2 11.8	5.4 5.1	2.9 0.0	0.7 7.5	-0.5 0.0	4.1 2.9
²⁶⁰ [104]	10.5	6.8	0.3	-4.2	0.1	7.2 (1st)	²⁶⁰ Md	standard (2nd) supershort	12.3 11.7	5.4 5.2	2.9 0.0	0.7 6.5	-0.5 0.0	3.1 2.4
²⁷² [108]	10.6	6.8	0.3	-4.1	0.1	5.5 (1st)		standard (2nd)	12.0	5.5	2.9	0.5	-0.4	3.2
							²⁵⁸ No	supershort standard (2nd)	11.8 11.9	5.1 5.6	0.0 2.3	7.3 0.6	$0.0 \\ -0.3$	2.9 2.7
							²⁶⁰ [104]	supershort standard (2nd)	11.5 12.4	5.5 5.4	0.1 2.9	4.5 0.5	0.0 0.5	1.4 1.2
							272[108]	supershort standard (2nd)	12.5 12.9	5.4 5.5	0.2 2.3	4.3 0.8	0.0 -0.6	-2.6 -2.0

Prescission shapes

Energy of descent E_{doc} :

Brosal model

Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupturd Fundamentals Scission

ission Channels Graph Tree Tables Barriers Standard Magic

Energy of descent <i>Laes</i> .	2
 difference between 	2
potential energies of	2
"ground state"	2
and	2
"prescission shape"	-
	2
Table :	2
	2
different nuclei with	2

different	nuclei	with
different	chann	els

Nucleus	Channel	! (fm)	r (fm)	z (fm)	c (fm)	s (fm)	E'_des (MeV)	$p^*_\epsilon(\%)$
213At	standard	15.2	1.5	2.1	12.4	-1.7	-15.6	0.8
	superlong	17.5	1.5	0.5	12.5	0.1	-6.3	99.2
227Ac	standard	15.6	1.5	1.1	11.8	-1.5	5.8	46
	superlong	18.2	2.2	0.0	7.2	0.0	6.9	54
232 Th	standard I	15.5	1.5	0.2	20.2	-1.6	9.6	29.2
	standard II	16.3	1.5	0.3	13.4	-1.6	8.8	69.6
	superlong	19.4	2.1	0.0	5.4	0.0	7.2	1.2
²³⁶ U	standard I	15.4	1.5	0.3	22.5	-1.3	12.7	16.9
	standard II	16.4	1.5	1.3	16.0	-1.4	14.8	83.0
	superlong	21.2	1.8	0.0	5.2	0.0	15.2	0.1
²⁴⁰ Pu	standard I	15.8	1.5	0.6	21.0	-1.1	16.8	26.2
	standard II	16.6	1.5	0.3	17.2	-1.7	18.7	73.8
	superlong	21.4	1.9	0.0	4.4	0.0	23.1	
252Cf	supershort	14.3	1.5	0.0	31.2	0.0	12.4	
	standard I	16.6	1.5	-0.4	18.5	-1.2	23.6	8.5
	standard II	17.5	1.5	0.8	18.3	-1.4	29.1	62.0
	standard III							27.7
	superasymmetric	18.2	1.5	4.2	12.0	-1.7	18.3	0.5
	superlong	21.0	2.6	0.3	2.5	-0.1	27.8	1.3
255 Es	supershort	14.9	1.5	0.1	23.4	-0.2	19.0	13
	standard	17.2	1.5	0.3	12.3	-1.3	24.3	87
²⁵⁸ Fm	supershort	15.0	1.5	0.2	22.4	-0.1	22.5	50
	standard	17.2	1.5	0.2	12.1	-1.3	26.6	50
²⁵⁹ Fm	supershort	14.9	1.5	0.0	18.1	0.0	24.7	73
	standard	17.6	1.5	0.2	11.2	-1.4	28.5	27
272[108]	supershort	17.4	1.5	0.3	8.1	-0.2	61.7	
	standard	22.7	1.7	0.8	5.7	-1.7	67.9	

Prescission shapes

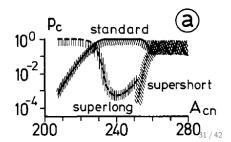
Brosal model

• Channel probabilities $P^e_{\boldsymbol{c}}$

Nucleus	Channel	l (fm)	r (fm)	z (fm)	c (fm)	s (fm)	E_{des}^{t} (MeV)	$p_{c}^{e}(\%)$
213At	standard	15.2	1.5	2.1	12.4	-1.7	-15.6	0.8
	superlong	17.5	1.5	0.5	12.5	0.1	-6.3	99.2
²²⁷ Ac	standard	15.6	1.5	1.1	11.8	-1.5	5.8	46
	superlong	18.2	2.2	0.0	7.2	0.0	6.9	54
²³² Th	standard I	15.5	1.5	0.2	20.2	-1.6	9.6	29.2
	standard II	16.3	1.5	0.3	13.4	-1.6	8.8	69.6
	superlong	19.4	2.1	0.0	5.4	0.0	7.2	1.2
²³⁶ U	standard I	15.4	1.5	0.3	22.5	-1.3	12.7	16.9
	standard II	16.4	1.5	1.3	16.0	-1.4	14.8	83.0
	superlong	21.2	1.8	0.0	5.2	0.0	15.2	0.1
²⁴⁰ Pu	standard I	15.8	1.5	0.6	21.0	-1.1	16.8	26.2
	standard II	16.6	1.5	0.3	17.2	-1.7	18.7	73.8
	superlong	21.4	1.9	0.0	4.4	0.0	23.1	
²⁵² Cf	supershort	14.3	1.5	0.0	31.2	0.0	12.4	\frown
	standard I	16.6	1.5	-0.4	18.5	-1.2	23.6	8.5
	standard II	17.5	1.5	0.8	18.3	-1.4	29.1	62.0
	standard III							27.7
	superasymmetric	18.2	1.5	4.2	12.0	-1.7	18.3	0.5
255_	superlong	21.0	2.6	0.3	2.5	-0.1	27.8	1.3

0 / 42

Brosal model


- Nuclear Scission Introduction
- Scissioning nuclei
- Nuclear shapes
- Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Why superlong's probability $\left(P_{sl}\right)$

- dominates for light nuclei
- diminishes with increasing A_{cn}
- Why supershort's probability $\left(P_{ss}
 ight)$
 - never able to push standard into forgetfulness

Answer

height of barriers

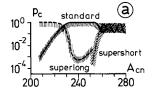
Brosal model

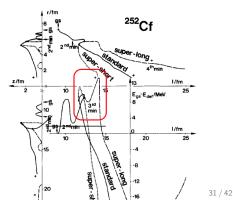
- Nuclear Scission Introduction Scissioning
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables **Barriers** Standard

- For simplicity imagine :
 - only two fission channels
 - one bifurcation point
 - several barriers

Brosal model

Nuclear Scission Introduction Scissioning nuclei


Nuclear shapes


Neck ruptur Fundamentals Scission

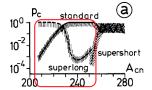
low-energy fission Channels Graph Tree Tables Barriers Standard Magic

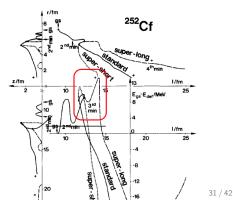
Situation (i)

- The highest barriers of channels lie behind bifurcation
- \Rightarrow channels have separate highest barriers

Brosal model

Nuclear Scission Introduction Scissioning

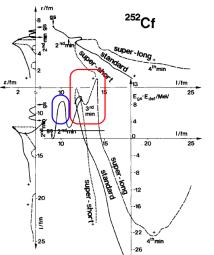

Nuclear shapes


Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Situation (i)

- superlong standard bifurcation
- ullet applies to nuclei lighter than ^{252}Cf



superlong and standard channels

Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard

- first standard barrier is low
- after bifurcation (close to the 2nd min)
- high second standard and superlong barriers

31 / 42

Brosal model

Nuclear Scission Introduction Scissioning nuclei

Nuclear shapes

Neck rupture Fundamentals Scission

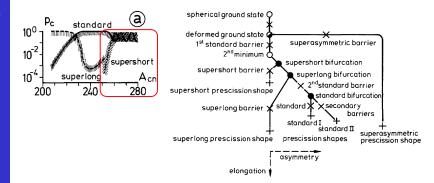
low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Situation (ii)

- before bifurcation, one highest barrier for both channels
- after bifurcation, lower secondary barriers

Brosal model

Nuclear Scission Introduction Scissioning nuclei


Nuclear shapes

Neck ruptur Fundamentals Scission

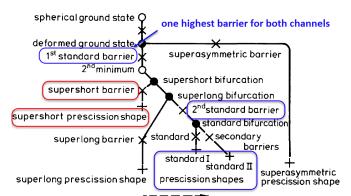
low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Situation (ii)

- supershort standard bifurcation
- ${\, \bullet \, }$ applies to nuclei heavier than ^{252}Cf

Brosal model

Nuclear Scission Introduction Scissioning


- Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables

Barriers Standard

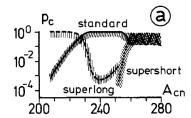
Magic

Situation (ii)

- all nuclei fissioning via supershort channel climb supershort barrier
- all standard fissioners overcome second standard barrier

Brosal model

Nuclear Scission Introduction Scissioning


Nuclear shapes

Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Marrie

Situation (i)

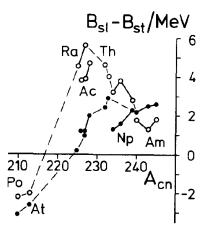
- behind bifurcation, the highest barriers of channels
- Situation (ii)
- before bifurcation, one highest barrier for both channels That's why :
 - superlong and standard channels can displace each other
 - supershort and standard channels must coexist

superlong barrier B_{sl} over standard barrier B_{st}

Brosal model

Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupture

Fundamentals Scission


ow-energy fission Channels Graph Tree Tables Barriers Standard

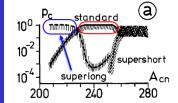
Standard Magic

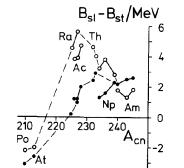
Barrier-height differences

 \circ : computational results

• : measured data

superlong barrier B_{sl} over standard barrier B_{st}


Brosal model


- Nuclear Scission Introduction Scissioning
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard

• For lighter nuclei :

- P_{sl} is higher $\Rightarrow B_{sl}$ is lower
- by increasing mass :

 P_{st} becomes larger $\Rightarrow B_{st}$ becomes smaller

32 / 42

standard barrier B_{st} over supershort barrier B_{ss}

Brosal model

- Nuclear Scission Introduction Scissioning
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard
- Magic

- Table : arranged according to increasing differences
- As the differences grow
- supershort probabilities
 P_{ss} increase

Nucleus	$[B_{st}(2nd) - B_{ss}]^{t}$ (MeV)	$p_{ss}^{c}(\%)$
²⁵² Cf	-0.9	0
²⁶⁰ [104]	-0.2	0
²⁵⁸ No	-0.2	5
²⁵⁹ Md	0.2	12
255Es	0.2	13
²⁵⁶ Fm	0.6	≈1 0
²⁵⁸ Fm	0.8	50
²⁶⁰ Md	0.8	58
259Fm	1.2	≈73

standard barrier B_{st} over supershort barrier B_{ss}

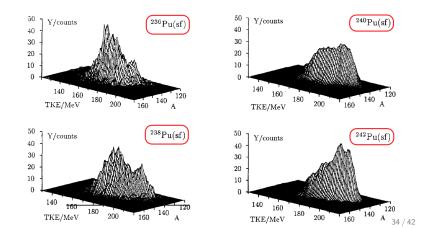
Brosal model

Nuclear Scission Introduction Scissioning nuclei

Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic

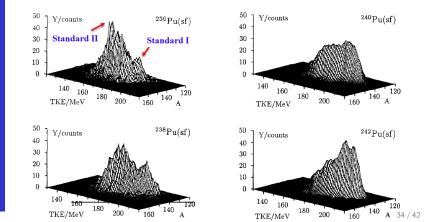
$\ensuremath{\, \bullet \,}$ Table : arranged according to increasing mass number A


ا [10 ⁰	Pc s	stando	ird	a
10 ⁻²	Martin Construction of the second	N	sup	ershort
10 ⁻⁴ -	" sup	erlong	14.	A _{cn}
20	0	240	1 1-	280

Nucleus	$\left(B_{st}(2nd)-B_{ss}\right)$	$P_{ss}(\%)$
^{252}Cf	-0.9	0
^{255}Es	0.2	13
^{256}Fm	0.6	10
^{258}No	-0.2	5
^{258}Fm	0.8	50
^{259}Md	0.2	12
^{259}Fm	1.2	73
$^{260}[104]$	-0.2	0
^{260}Md	0.8	58

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupture Fundamentals
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic


• Fission yields of plutonium isotopes over the plane of fragment mass number A and TKE

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape
- Neck ruptur Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard

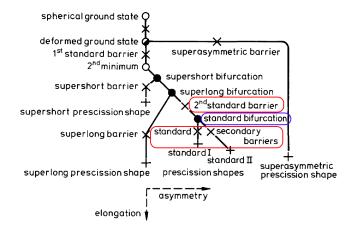
• Standard I : around $A \approx 135$ and $TKE \approx 190 MeV$ • Standard II : around $A \approx 142$ and $TKE \approx 175 MeV$

Standard I prescission shape:

- less asymmetric and shorter than standard II
- make fragments with less deformation

Nucleus	Channel	<i>l</i> (fm)	r (fm)	z (fm)	c (fm)	s (fm)	$E'_{\rm des}$ (MeV)	$p^{\mathfrak{e}}_{\mathfrak{c}}(\%)$
²¹³ At	standard superlong	15.2 17.5	1.5 1.5	2.1 0.5	12.4 12.5	-1.7 0.1	-15.6 -6.3	0.8 99.2
²²⁷ Ac	standard superlong	15.6 18.2	1.5 2.2	1.1 0.0	11.8 7.2	-1.5 0.0	5.8 6.9	46 54
²³² Th	standard I standard II superlong	15.5 16.3 19.4	1.5 1.5 2.1	0.2 0.3 0.0	20.2 13.4 5.4	$-1.6 \\ -1.6 \\ 0.0$	9.6 8.8 7.2	29.2 69.6 1.2
²³⁶ U	standard I standard II superiong	15.4 16.4 21.2	1.5 1.5 1.8	0.3 1.3 0.0	22.5 16.0 5.2	$-1.3 \\ -1.4 \\ 0.0$	12.7 14.8 15.2	16.9 83.0 0.1
²⁴⁰ Pu	standard I standard II superlong	15.8 16.6 21.4	1.5 1.5 1.9	0.6 0.3 0.0	21.0 17.2 4.4	-1.1 -1.7 0.0	16.8 18.7 23.1	26.2 73.8
²⁵² Cf	supershort standard I standard II standard III	14.3 16.6 17.5	1.5 1.5 1.5	0.0 -0.4 0.8	31.2 18.5 18.3	0.0 -1.2 -1.4	12.4 23.6 29.1	8.5 62.0 27.7
	superasymmetric superlong	18.2 21.0	1.5 2.6	4.2 0.3	12.0 2.5	-1.7 -0.1	18.3 27.8	0.5 1.3

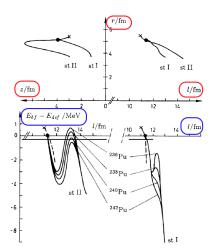
Brosal model


- Scission Introduction Scissioning nuclei
- Nuclear shapes
- Fundamentals
- low-energy fission Channels Graph Tree Tables Barriers
- Standard

34 / 42

Brosal model

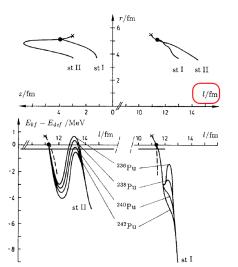
- Nuclear Scission Introduction Scissioning nuclei Nuclear shap
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard


- \bullet behind 2^{nd} standard barrier : standard bifurcation
- behind bifurcation : low "standard secondary barriers" situation (ii)

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape
- Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magin

 $\bullet\,$ Geometric and energetic characteristics of standard $\rm I/II$ in Pu isotopes

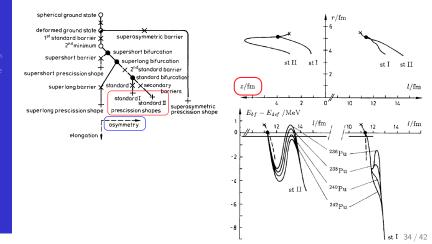


Brosal model

Scission Introduction Scissioning nuclei Nuclear shape

Fundamentals Scission

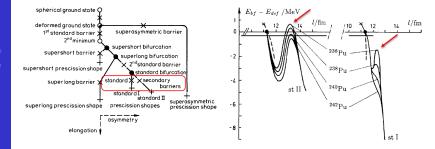
low-energy fission Channels Graph Tree Tables Barriers Standard • Top-right: standard I ruptures at a shorter semilength l



34 / 42

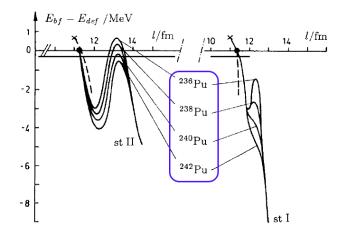
Brosal model

Standard


• Top-left: standard I ruptures with a smaller asymmetry z

Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape: Neck rupture Fundamentals Scission Iow-energy
- Channels Graph Tree Tables Barriers Standard


• Bumps in potential energy : secondary standard barriers

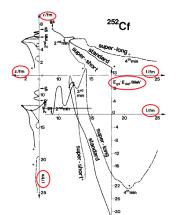
Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shapes Neck rupture Fundamentals Scission Iow-energy fission Channels Graph
- Graph Tree Tables Barriers Standard

- From light to heavy isotopes : barriers decrease
- Along standard I : barriers even disappear

Strutinsky's approach

Brosal model


Nuclear Scission Introduction Scissioning

Nuclear shapes

Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic • To reveal fission channels :

- compute potential energy of deformed nuclei E_{def}
- as a function of shape coordinates

Strutinsky's approach

Brosal model

- Nuclear Scission Introduction Scissioning
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard
- Standard Magic

- To reveal fission channels :
 - compute potential energy of deformed nuclei E_{def}
 - as a function of shape coordinates
- Strutinsky's approach :
 - the potential energy is composed of :
 - a "liquid-drop" part and a "shell" part
 - $E_{def} = E_{ld} + E_{shell}$
- Myers-Swiatecki model : liquid-drop part E_{ld}

Magic numbers of fission

Brosal model

Nuclear Scission Introduction Scissioning

Nuclear shapes

Neck rupture Fundamentals Scission

low-energy fission Channels Graph Tree Tables Barriers Standard Magic • Powerful shell effects are fundamental for :

• formation of exit channels in nuclear fission

• Shell effects are caused by :

• significant gaps

• gap existence \Rightarrow magic numbers existence

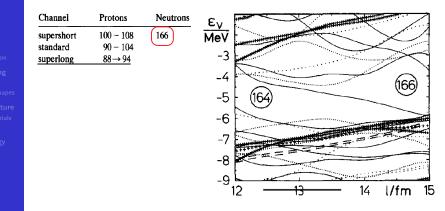
Magic numbers of fission

Brosal model

- Nuclear Scission Introduction Scissioning
- Nuclear shape
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

• Magic numbers of fission :

properties of "fissioning nuclei"

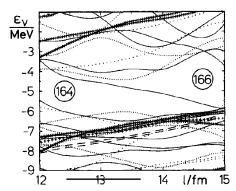

Channel	Protons	Neutrons
supershort	100 - 108	166
standard	9 0 - 104	
superlong	$88 \rightarrow 94$	

- dash : a magic range
- arrow : transition
- neutron magic numbers or range : not clear in standard and superlong channels

36 / 42

Brosal model

Magic

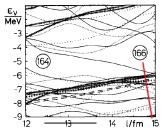


• Figure: neutron single-particle spectrum ϵ_{ν} as a function of elongation l

Brosal model

Magic

- Two large gaps :
 - above the 82nd level at moderate deformations (164 neutrons fit it)
 - above the 83rd level at larger stretching (166 neutrons fit it)

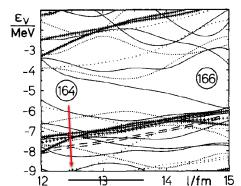


Brosal model

Magic

\bullet at semilength $l\approx 15(fm)$: supershort channel ruptures

Nucleus	Channel	<i>l</i> (fm)	r (fm)	z (fm)	c (fm)	s (fm)
252Cf	supershort	14.3	1.5	0.0	31.2	0.0
	standard I	16.6	1.5	-0.4	18.5	-1.2
	standard II	17.5	1.5	0.8	18.3	-1.4
	standard III					
	superasymmetric	18.2	1.5	4.2	12.0	-1.7
	superlong	21.0	2.6	0.3	2.5	-0.1
²⁵⁵ Es	supershort	14.9	1.5	0.1	23.4	-0.2
	standard	17.2	1.5	0.3	12.3	-1.3
²⁵⁸ Fm	supershort	15.0	1.5	0.2	22.4	-0.1
	standard	17.2	1.5	0.2	12.1	-1.3
²⁵⁹ Fm	supershort	14.9	1.5	0.0	18.1	0.0
	standard	17.6	1.5	0.2	11.2	-1.4
²⁷² [108]	supershort	17.4	1.5	0.3	8.1	-0.2
	standard	22.7	1.7	0.8	5.7	-1.7


Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shapes Neck rupture Fundamentals Scission
- row-energy fission Channels Graph Tree Tables Barriers Standard Magic

• at semilength $l \approx 12.5 (fm)$:

liquid-drop energies are so adverse

- \Rightarrow shell cannot induce scission
- \Rightarrow 166 : correct neutron magic number of supershort channel

Brosal model

fission	
Magic	

Channel	Protons	Neutrons	εν]
supershort standard superlong	$ \begin{array}{r} 100 - 108 \\ 90 - 104 \\ 88 \rightarrow 94 \end{array} $	166	MeV -6 -7					
• not	a definite	gap	-8 _9				102	
	road zone ning	of level	-10 -11					· ///
	magic range $0 - 108$	2:	-12 1	2	13	14	l/fm	J 15

Proton magic number of standard channel

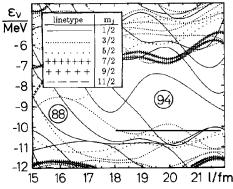
Brosal model

- Nuclear Scission Introduction Scissioning nuclei
- Nuclear shapes
- Neck rupture Fundamentals Scission
- low-energy fission Channels Graph Tree Tables Barriers Standard Magic

- $\bullet\,$ Proton magic number : wide range of 90-104
- Universality of standard channel through many preactinides and all actinides

Channel	Protons	Neutrons
supershort	100 - 108	166
standard	90 - 104	
superlong	<u>88→94</u>	

Proton magic number of superlong channel


Brosal model

- Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupturr Fundamentals Scission Iow-energy fission
- fission Channels Graph Tree Tables Barriers Standard Magic

- Two gaps :
 - 1 at 88 protons
 - at 94 protons

Channel	Protons	Neutrons
supershort	100 - 108	166
standard	90 - 104	
superlong	$(88 \rightarrow 94)$	

- Liquid-drop energies :
 - not adverse to hinder nucleus from breaking

Magic numbers of fission

Associate :

Brosal model

Magic

 magic numbers of fissioning nucleus • magic numbers of fragments (2, 8, 20, 28, 50, 82, 126) Supershort neutron magic number 166 :

• almost the sum 82 + 82

Lower standard magic number 90 :

• constructed as 40 + 50

Superlong magic number :

no symmetric decomposition of 88 or 94

Neutrons

Protons

Channel

8

supershort standard superlong

Magic numbers of fission

Brosal model

Nuclear Scission Introduction Scissioning nuclei Nuclear shape Neck rupture Fundamentals

low-energy fission Channels Graph Tree Tables Barriers Standard Magic

Magic numbers of fission :

- sum of magic numbers of fragments
- some nucleons for the neck

- For superlong channel :
 - number of nucleons added
 - so large that

+

• the argument looses its credibility

Channel	Protons	Neutrons
supershort	100 - 108	166
standard	90 - 104	
superiong	$88 \rightarrow 94$	

Thank you for your attention!

Brosal model

Scission Introduction Scissioning nuclei

Neck rupture Fundamentals Scission

ow-energy fission Channels Graph Tree Tables Barriers Standard Magic

