Development and testing of particle detector technology for high-energy experiments

My work as an international visiting graduate student at LNF 2017-2018

Paula Fernanda Toledo Matuoka

GRENAC Meeting

paulaftm@if.usp.br

Monday, November 12, 2018

LNF-INFN

Figure 1 : Laboratori Nazionali di Frascati - Istituto Nazionale di Fisica Nucleare – Frascati, IT. Ref.: www.lnf.infn.it

Paula Matuoka (IFUSP)

Internship at LNF 2017-2018

2 / 22

As an international visiting graduate student at LNF-INFN/Italy from Nov/2017 to Sep/2018, my research activities were divided in two parallel blocks:

- Assembly tasks: my goal was to take part on the assembly of the outer-layer super-modules for the new ALICE Inner Track System at LNF and understand the challenging steps of such activity.
- Analysis tasks: my goal was take part on the ALICE-LNF Analysis Group, work on selected topics of Heavy-Ion Collision Physics and also get familiarized with the analysis techniques and software development.

ALICE – A Large Ion Collider Experiment

Figure 2 : ALICE (CERN)

Paula Matuoka (IFUSP)

Internship at LNF 2017-2018

4 / 22

ITS – Inner Tracking System

Figure 3 : Current ALICE ITS.

Paula Matuoka (IFUSP)

ITS Upgrade

Figure 4 : ALICE ITS upgrade.

Paula Matuoka (IFUSP)

ITS Upgrade – Dimensions

Figure 5 : ITS Upgrade: dimensions of the inner (left), middle and outer (right) layers.

7 / 22

ITS Upgrade – The Stave

Figure 6 : ITS Stave: details of the inner (left), middle and outer (right) layers.

ALPIDE – ALICE Plxel DEtector

CMOS MAPS - Monolothic Active Pixel Sensor:

- Sensor and read-out electronics integrated.
- Chip dimensions: 15mm X 30mm x 100 μ m.
- Pixel matrix: 1024 columns × 512 rows.
- Pixel pitch: 29 X 27 μm^2 .
- Spatial resolution: 5 μ m
- Material budget: $0.3\% X_0$ (inner layer) and $0.8\% X_0$ (middle and outer layer).

Figure 7 : CMAPS pixel (cross section).

Figure 8 : ALPIDE Pixel Chip.

Paula Matuoka (IFUSP)

Internship at LNF 2017-2018

Monday, November 12, 2018

9 / 22

ALPIDE read-out electronics.

Figure 9 : Read-out electronics.

Paula Matuoka (IFUSP)

ALPIDE pixel cell.

Figure 10 : ALPIDE pixel cell.

Paula Matuoka (IFUSP)

ALPIDE interface signals.

Figure 11 : Flex-Printed Circuit map (interface signals).

Paula Matuoka (IFUSP)

Internship at LNF 2017-2018

Monday, November 12, 2018

ITS Upgrade at LNF-INFN

Assembly of the new ITS outer-layer super-modules (2017-2018)

OBHIC: carrier plate.

OBHIC: Reception Test

OBHIC: Reception Test Setup and GUI.

OBHIC: flipping table.

OBHIC: Tab-cutter.

OBHIC: Tab Cutting - before and after the cut.

OBHIC: Cutting the wings.

OBHIC ready

Half-Stave: gluing of the modules on the cold plate.

Half-Stave: soldering table.

Half-Stave: soldering / Interconnections.

Half-Stave: qualification test.

Stave: gluing the Half-Staves to the Space-Frame.

Stave: Metrology.

Stave: electrical components.

Stave: visual inspection with thermal camera (looking for broken chips).

Stave: transport box.

Production spectra of κ , π and p for the p-Pb data at $\sqrt{s_{NN}} = 8.16$ TeV (NEW).

- ONGOING.
- PWG-LF: Physics Working Group Ligh-Flavor Spectra.
- AliPhysics framework, ROOT/C++.
- Status: each member of the group is responsible for one of the ALICE subdetectors.
- My analysis: Relative Rise using TPC data (complementary).

Analysis

Figure 12 : Bethe-Bloch curve 1 .

¹Ref.: http://pdg.lbl.gov/2017/reviews/rpp2017-rev-passage-particles-matter.pdf

Paula Matuoka (IFUSP)

Analysis

Bethe-Bloch formula ²:

$$\left\langle \frac{dE}{dx} \right\rangle = \frac{4\pi N e^4}{mc^2} \frac{z^2}{\beta^2} \left(\ln \frac{2mc^2 \beta^2 \gamma^2}{I^2} - \beta^2 - \frac{\delta(\beta)}{2} \right) \tag{1}$$

Modified Bethe-Bloch formula with E_{max} cut-off due to δ -electrons:

$$\left\langle \frac{dE}{dx} \right\rangle = \frac{4\pi N e^4}{mc^2} \frac{z^2}{\beta^2} \left(\frac{1}{2} \ln \frac{2mc^2 E_{max} \beta^2 \gamma^2}{l^2} - \frac{\beta^2}{2} - \frac{\delta(\beta)}{2} \right)$$
(2)

As $\beta\gamma$ increases:

- Low momenta: curve falls $\propto 1/\beta^2$.
- $\beta \gamma \approx 3.6$: minimum (MIP).
- Relativistic rise logarythmic behavior.
- Very high momenta: Fermi plateau (constant).

Paula Matuoka (IFUSP)

²Ref.: tuprints.ulb.tu-darmstadt.de/3063/1/PhDThesis.pdf

Analysis – Relativistic Rise

Figure 13 : Bethe-Bloch curve³.

Why?

- *E_{max}* rises.
- Cross section for excitation and ionization rises due to the relativistic contraction of the EM field in longitudinal direction.

RR for PID purposes ⁴:

- Steady increase provides a difference in dE/dx for particles with same momentum, but different masses over a large momentum range.
- Requires high precision measurements.
- Resolution does not separare clearly signals from pions, kaons and protons
 → Gaussian unfolding fit.

 3 Ref.: http://pdg.lbl.gov/2017/reviews/rpp2017-rev-passage-particles-matter.pdf 4 Ref.: http://www.hep.lu.se/staff/gros/thesis.pdf

Paula Matuoka (IFUSP)

Analysis - Gaussian unfolding fit

Statistical PID is recommended for high p_T (> 3GeV/c).

Gaussian curve parameters:

- Mean: < dE/dx > from BB formula.
- Width: resolution.
- Amplitude: given by the fit; area gives the yield.

Figure 14 : Example of Gauss unfolding fit ⁵.

⁵Ref.: http://www.hep.lu.se/staff/gros/thesis.pdf

Paula Matuoka (IFUSP)

Internship at LNF 2017-2018

17 / 22

Analysis – preliminary results

TPC Signal vs Transverse Momenta

Figure 15 : TPC signal vs p_T .

Analysis – preliminary results

Figure 16 : PID hypotheses for each particle type as functions of number of standard deviation for TPC.

Paula Matuoka (IFUSP)

- Get TPC signal and plot agains *p*.
- Total number of events: comparison with others.
- Number of clusters $N_{cl} \rightarrow$ resolution.
- Particle hypotheses: identify π , estimate k and p.
- Cuts.
- Check if there's enough statistics for high p_t .
- Efficiency (Monte Carlo simulation).
- Combined spectra.

One of the challenges is to keep track of the super-modules' reproducibility and quality by means of regular tests and measurements throughout the production chain, by identifying possible sources of damage and by finding viable solutions.

TPC relative rise regime is a relevant approach to access the high transverse momenta particle identification. Measurement of multiplicities in extended p_T spectra for different light flavors on p-p, p-Pb and Pb-Pb data provides a comparison of how the hadronization mechanism takes place in the different QCD environment.

Thank you!