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Resumo 

 

 

Pontos quânticos auto-organizados de InAs/GaAs apresentam uma composição não-

homogênea de átomos de índio resultante de efeitos de segregação e difusão de átomos entre 

camadas. Atualmente, não existe um método para obter informações em tempo real a respeito 

da migração dos átomos dentro de pontos quânticos. Medidas de raio-x “ex-situ” são sempre 

possíveis mas o volume diminuto dos pontos quânticos tornam o gradiente da concentração de 

índio dentro destas nanoestruturas praticamente imperceptível nas medidas. A descrição do 

perfil de composição de índio é crucial em qualquer cálculo. Nesta tese é apresentado um 

procedimento inédito que combina um método de resolução da equação de Schrödinger 

baseada em Elementos Finitos e métodos de otimização metaheurística para acertar os picos 

de fotoluminescência por meio de um ajuste fino da distribuição de índio dentro de pontos 

quânticos de InxGa1–xAs/GaAs crescidos por epitaxia de feixe molecular. Este procedimento 

leva em conta tanto a variação vertical quanto radial na composição de índio dentro dos 

pontos quânticos resultantes de efeitos de segregação e difusão. 
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Abstract 

 

 

Self-assembled InAs/GaAs quantum dots have a non-homogeneous indium 

composition profile resulting from segregation and intermixing effects. Currently, there is not 

a method to obtain any real-time information on the migration of atoms inside the quantum 

dots. Ex-situ x-ray measurements are always possible, but in general, the very small volume 

of the quantum dots makes the signal almost insensitive to the indium gradient inside these 

nanostructures. The description of this indium composition profile is most crucial in any 

calculation. This thesis presents a novel iterative procedure that combines a Finite Element 

based solver for the Schrödinger equation and a metaheuristic optimization to match 

experimental photoluminescence peaks by fine-tuning the indium distribution inside  

InxGa1–xAs/GaAs quantum dots grown by molecular-beam epitaxy. This procedure takes into 

account both the vertical and radial indium-composition profiles resulting from segregation 

and intermixing effects. 
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1 Introduction 

 

 

Quantum dots (QDs) are semiconductor nanostructures that confine carrier in all three 

spatial dimensions, and consequently the energy levels in these nanostructures have properties 

that resemble those of an atom. QDs can be produced in many different shapes and sizes, with 

dimensions ranging from a few to dozens of nanometers. Spherical-shaped QDs have electron 

wave functions similar to atoms due to their spherical symmetry. However, unlike atoms, 

QDs are not restricted to a spherical shape and, therefore, different electronic shell structures 

are possible. Moreover, whereas the spacing of the atomic energy levels is about 1-10 eV, the 

spacing of energy levels in semiconductor QDs is on the order of 1-10 meV. This fact 

suggested that QDs could be used to investigate phenomena that are experimentally 

challenging or even unattainable in atoms like the study performed by Kouwenhoven, 

Austing, and Tarucha 2001 [1], which presents the effect of magnetic fields on the electronic 

shells of QDs. Magnetic field on the order of 1 T is sufficient to considerably change the 

shape of electronic shells in QDs, but a similar modification in the electronic shell of atoms 

would require magnetic fields on the order of 106 T [1]. With such characteristics, QDs 

unlock nanoscale phenomena that are very interesting not only for scientific research but also 

for technological applications with potential use in novel or improved performance devices in 

areas such as lasers [2–4], quantum information [5–8], photodetectors [9, 10], and solar cells 

[11, 12]. While lasers based on QDs have already reached commercialization level, other QD 

devices still face the challenge of finding the theoretically expected high performance. The 

following paragraphs present some applications of QDs in memory devices, photodetectors, 

and solar cells. 

At present, the memory density of hard disk drives based on magnetic technology is in 

the order of 0.47 Tb/cm2 [13, 14]. Imamura et al. [15] proposed a concept of device that may 

increase the memory density: an optical memory device based on QDs that employs the 

memory effect by photocurrent. Such optical memory devices present the possibility of 

storing one bit per QD, so that a surface density of one QD per 100 nm2 would have a 

memory density of 1012 bit/cm2 (1 Tb/cm2). The spin of an electron in QDs may also be used 

to store and retrieve quantum information. On this line of investigation, Kroutvar et al. [16] 

proposed an electron spin memory device using semiconductor QDs. Therefore, this is a 

spintronic device, as opposed to the Imamura et al., which is an optical device. Besides 
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memory devices, the long coherence time of electron spin in QDs [17] also promotes fields 

such as quantum computing and quantum cryptography. 

The gases that compose the atmosphere of the Earth absorb electromagnetic energy in 

very specific regions of the spectrum. Figure 1.1 shows the infrared atmospheric transmission 

spectrum. There are regions of the electromagnetic spectrum that are weakly absorbed and, 

consequently, present high transmission rates through atmosphere. Those regions are known 

as atmospheric windows and they are represented by the blue areas tagged with SWIR (short-

wavelength infrared), MWIR (mid-wavelength infrared), and LWIR (long-wavelength 

infrared) in Figure 1.1. Most remote sensors onboard aircrafts and Earth observation satellites 

operate in one or more of these windows. These sensors are engineered to detect specific 

wavelengths that pass through the atmosphere such as the mid-wave infrared (3–5 μm) and 

the long-wave infrared (8–12 μm) regions. Moreover, many molecular compounds have 

vibrational modes in the 3–17 μm part of the spectrum. Exploring the electromagnetic 

emissions associated to these vibrational modes allows, for instance, the detection and 

measurement of air pollutants and detection of hidden explosives. 

 

FIGURE 1.1 – Infrared atmospheric transmission spectre. Reproduced from [18]. 

Besides, the mid-wave infrared window is interesting because this is the region of the 

wavelength signature of jet engines exhaust plume that guided missile sensors are adjusted to 

seek. Detection of these regions requires semiconductor materials with narrow band-gaps 

(0.10–0.41 eV) corresponding to photon energies in these windows. Nowadays, the 

commercial devices that operate in these regions of infrared spectrum are concentrated in two 

technologies. One is based on bulk semiconductor materials and the other on quantum well 

nanostructures. Two semiconductor materials dominate the fabrication of bulk detectors [19]: 

indium antimonide (InSb) and mercury cadmium telluride (HgCdTe) semiconductors. The 

first has been fabricated commercially since the late 1950’s and the other a little past in 1962 
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when the first HgCdTe-based detector was created. Bulk detectors have achieved great 

commercial penetration due to ease of large-scale fabrication and high detectivity at cryogenic 

temperatures. However, InSb-based detectors lack wavelength tunability. HgCdTe system 

allows wavelength tunability through material composition but precise control to obtain a 

fine-tuned fraction mole of CdTe compound is a major issue for HgCdTe-based devices, 

particularly as the band gap of the material decreases towards the detection of long-wave 

infrared (8–12 μm) and beyond [20]. Figure 1.2 shows the energy gap of Hg1–xCdxTe as a 

function of fraction mole of CdTe at 0 K obtained from the most widely used expression [21]: 

     32
g x832.0x81.0x21000535.0x93.1302.0x  TT,E . (1.1) 

As the band gap goes down, variation of the mole composition of HgCdTd by 0.001 

can have drastic effects on the performance of a detector and that level of control is extremely 

difficult, regardless of the growth method. 

 

FIGURE 1.2 – The band gap of Hg1–xCdxTe as a function of fraction mole x of CdTe at 0 K. 

With regard to quantum-well infrared photodetectors (QWIPs), its main disadvantage 

is the insensitivity to normally incident radiation, thus requiring complicated optical systems. 

QD-based infrared photodetectors (QDIPs) offer a very promising future alternative, which 

would be sensitive to normally incident radiation and would presumably have very low dark 

currents even at room temperature due to the three-dimensional confinement of electrons in 

the QD [22]. QDIPs have been demonstrated to be superior to QWIPs but their full potential 

has not yet been achieved, and QDIPs are currently under intensive experimental and 

theoretical study [23–26]. Moreover, the delta function-like density of states of QDs 
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theoretically ensures strong luminescence over a narrow spectrum even at high temperatures 

[27] making them more efficient sources for several optoelectronics applications. Long-

distance telecommunication [28, 29] has huge demands for high-quality emitters and receivers 

matching the absorption and dispersion minimum of optical fibers (wavelengths of 1.3 μm 

and 1.5 μm). The selectivity characteristic of a QD makes it ideal candidate to build such 

devices and would benefit several applications relied on optical fibers. 

Concerning energy sources, there has been a global focus to search for new and 

renewable energy sources motivated by possible energy shortage and by demands of 

environmental protection. Solar energy is one of the promising candidates for clean and 

renewable energy. Moreover, photovoltaic solar panels are the main powering device for 

spacecrafts and satellites operating in the inner Solar System. For space applications, solar 

cells made of III-V compound semiconductors are typically favored over crystalline silicon 

because they have higher efficiency and power to mass ratio [30]. Nowadays, the best single-

junction solar cell is based on GaAs and it demonstrates an efficiency of 28.8% and go up to 

38.8% if multi-junction is considered [31]. Much of the lower energy (lower than band gap of 

semiconductor) components of the solar spectrum are simply lost because they do not contain 

enough energy to create an exciton for photocurrent generation. The introduction of impurity 

or intermediate bands [32] is an alternative approach to bypass this efficiency. Theoretically, a 

single intermediate band could raise the efficiency to 63% and could go up to 85% by 

considering an infinite number of bands [33]. The presence of an array of semiconducting 

QDs within the junction of a p-type / intrinsic / n-type cell may lead to the formation of an 

energy band or bands within the band gap of the solar cell making these nanostructures a 

promising candidate for this technology [34, 35]. 

For illustrative purpose, Figure 1.3 shows a cross-sectional scanning tunneling 

microscopy (XSTM) image of a InAs/GaAs layer of self-assembled QDs reproduced from 

[36], in which InAs (GaAs) rich regions appear bright (dark) and the arrow indicates the 

growth direction. Figure 1.3-a refers to the as grown sample and Figure 1.3-b refers to the 

annealed sample. 
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FIGURE 1.3 – XSTM images of a layer of self-assembled QDs in (a) an as grown sample and 

(b) an annealed sample. The arrows indicate the growth direction. Reproduced from [36]. 

In order to realize the potentials and exploit the possibilities mentioned above further 

knowledge of the fundamental physics involving these nanostructures is still necessary. For 

this purpose, several researchers are conducting further studies in the understanding of the 

mechanisms behind the formation and composition of self-assembled QDs built by 

heteroepitaxial growth. The heteroepitaxial growth of crystalline semiconductor material 

occurs when the chemical identity of the epitaxial layer differs from that of the substrate. 

When these two materials have a misfit in their lattice parameters, the growth occurs in a 

strained mode. Generally, small misfits are accommodated by elastic distortions in which the 

deposited layer maintains the coherence with the substrate lattice, but greater misfits lead to 

plastic deformation (dislocations) in the strained layer. However, some highly strained 

heteroepitaxial systems (lattice mismatch ≥ 3%) present a transition in the growth-mode from 

two-dimensional to three-dimensional nucleation prior to the incorporation of dislocations, 

forming coherently strained (defect-free) QDs [37]. During the QD formation process, a 

wetting layer (WL) is formed and may remain depending on the system and growth 

conditions. Self-assembly of QDs has proven to be the most attractive approach to grow these 

nanostructures because it allows the production of a large number of coherently strained and 

relatively homogeneous QDs [38, 39] without slow and costly lithography steps. 

Bimberg et al. [40] and Prior et al. [41] are the pioneers to investigate the nature of the 

strain tensor in QD nanostructures and the strain effects are reviewed in details by 

Stangl et al. [39]. Actually, there are strong evidences that the trade-off between coherency 

energy and surface energy explain the strain-induced formation of QDs, however the detailed 

mechanism of nucleation and growth remains an open question [42–51]. Anyway, generally 

speaking, the formation of a coherently strained QD is associated with an overall relaxation of 

the strain energy. The elastic potential relaxation, which initially drives the QD configuration, 
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is opposed by the increase in surface energy associated with the increase in total surface area 

due to the island formation. Because of this increase in surface energy, the growth of the QDs 

is limited, and the strain energy of the system is not fully eliminated [51, 52]. This balance 

makes the QD formation very sensitive to variations on the main growth parameters. 

Furthermore, the size, shape, and chemical composition of a self-assembled QD are subject to 

random fluctuations, even in the presence of ordering mechanism. Deeply related to the strain, 

issues such as the shape [52–54] and composition [55–61] of the QDs are still source of 

considerable debate in the literature, since they have direct impact on the effectiveness of QD-

based devices. 

Coherently strained QDs usually have a non-homogeneous composition [62–64]. The 

non-homogeneous composition profile can be caused not only by intermixing of QDs with the 

surrounding layers (substrate and cap layer) [55] but also by atomic diffusion effects [65]. 

These atomic migrations cannot be tracked precisely neither by in situ techniques like 

reflection high-energy electron diffraction (RHEED) nor by ex situ techniques like x-ray 

measurements. In general, the very small volume of the QDs makes the signal of these 

measurements almost insensitive to the indium gradient inside these nanostructures [66–69]. 

Biasiol et al. [58] reviewed the experimental works on the compositional mapping of 

semiconductor QDs. 

In this context, the objective of this thesis is to contribute to the study of self-

assembled QDs. In order to achieve this end, several independent computer modules were 

developed: 

 a module that compute the remaining elastic potential energy from lattice 

mismatch in the nanostructure and other quantities such as photoluminescence 

peaks of energy (Chapter 2, Sections 2.1 and 2.3); 

 a class of material properties for several semiconductors of family III-V and 

theirs alloys. This class of material properties takes into account the effect of 

strain in the energy of gap and effective mass of charges in lattice mismatched 

strained films, the effective mass anisotropy, and the effect of temperature on 

the values of these properties (Chapter 2, Section 2.2); 

 a solver for the Schrödinger equation using the Finite Element Method in 

which the effective mass anisotropy and the azimuthal quantum number due to 

axisymmetric symmetry are taken into account (Chapter 2, Section 2.4.1); 
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 an automated builder for the finite element model of the QD nanostructure. 

This module constructs the geometric model, the mesh, and attributes the 

materials and boundary conditions (Chapter 3, Section 3.2); 

 a module that combine all the previous modules with a metaheuristic 

optimization framework to solve the inverse problem of non-homogeneous 

material distribution in a sample of self-assembled QDs given as input a 

measured physical quantity such as the photoluminescence peak energy 

obtained from a sample (Chapter 3, Section 3.4). 

The last module contributed to investigate the composition of a sample grown by 

Molecular Beam Epitaxy (MBE). The results from this investigation were published in [70]. 

A summary of this study is presented in Chapter 4. In principle, it focuses on InAs/GaAs 

system although most of the approaches and conclusions presented in that article will apply to 

other systems of self-assembled structures.  

Finally, the set of the developed computer codes is novel and up-to-date in the field of 

QDs. An optoelectronic device designer will undoubtedly benefit from simulations that are 

possible to execute with developed software, as it certainly would help shorten then 

development lifecycle of a prototype. For example, in a computer aided design environment, 

the part of the code that computes the electronic structure may be used to engineer the 

effective bandgap energy of the strained QDs. With further studies using this software, a 

designer can make an enlightened decision as to how many QD layers should be stacked 

vertically, how thick the QD layers and barrier spacing should be, how much lateral 

expansion of the dots of the higher layers can be expected and so forth. These are intricate 

questions, which are susceptible to affect the device performance and thus require an in-depth 

analysis of the material. Both, the bandgap engineering considering the strain and the study of 

vertically coupled QDs will be handled in future works and are not treated in this thesis.  

This thesis is organized as follows. The theme of this thesis is introduced in Chapter 1. 

It also contains some motivations and summarizes the achievements of this work. The 

theoretical background and the mathematical formulations to compute several phenomena in a 

nanostructure based on self-assembled QDs are presented in Chapter 2. The methodology and 

the computer code developed in this work as well as validation tests are presented in 

Chapter 3. The results are presented in Chapter 4. The conclusions, recommendations, and 

potential extensions of this work are presented in Chapter 5. 
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2 Mathematical formulations 

 

 

This chapter presents the theoretical framework used in this thesis together with the 

mathematical modeling of the electronic structure of semiconductor QDs and QWs as well as 

the numerical methods applied to solve the differential equation used to model the electronic 

states of these nanostructures. 

Devices based on QDs make use of the quantized energy levels of electrons and holes 

in these nanostructures to control the flow of charge. In this work, the effective-mass 

envelope-function theory [71] is assumed valid for both electron and hole within each 

semiconductor layer in the nanostructure. In this approach, the quantized levels, described by 

eigenstates, are computed by solving the Schrödinger equation: 

    rr  EĤ          rrrrM 
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2
, (2.1) 

where   stands for the vector differential operator, r represents the particle position, M(r) is 

the space-dependent electron or hole effective mass tensor, and Ψ(r) is the wave function. The 

potential energy V(r) is determined by the conduction- or valence-band offset at the 

heterojunction, and includes strain effects. The formulation to compute the elastic potential 

energy from the lattice parameter misfit is presented in Section 2.1. The mathematical 

formulations to compute the potential energy and the effective masses are presented in 

Section 2.2. Section 2.3 contains the background to compute photoluminescence peak 

transition energies. The numerical methods to solve Equation (2.1) are presented in 

Section 2.4. 

 

2.1 Elastic potential energy 

 

There are several approaches to calculate the strain profiles in a self-assembled 

nanostructure [41]. In this work, it is adopted the approach based on classical elasticity [72, 

73] in which the potential energy is computed calculating the relative displacement of each 

lattice site. If a thin epitaxial layer is deposited on a much thicker substrate then the lattice 

constant  r
lc
da  in the plane perpendicular to the growth direction will be forced to adjust itself 

to the lattice constant of the substrate lc
sa . Consequently, the epitaxial layer lattice is under 
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biaxial stress along the growth interface and while no force is applied along the growth 

direction, the crystal is able to relax freely along that direction. This biaxial stress results in 

the appearance of an in-plane strain, which in defect-free case can be calculated as 

      
 

 r

r
rrr

lc
d

lc
d

lc
s

//
a

aa
yyxx


  . (2.2) 

In the perpendicular direction, just like the width of a rubber band contracts when it is 

stretched along its length, the lattice constant in the growth direction is still forced to change 

due to the Poisson effect, defining two types of coherently strained growth depending if the 

lattice constant of the epitaxial layer is either smaller (Figure 2.1-a) or larger (Figure 2.1-b) 

than the lattice constant of the substrate. In the first case, there is a tensile strain (ε// > 0) 

which forces it to expand and in the second case, there is a compressive strain (ε// < 0) which 

forces the lattice constant of the epitaxial layer to shrink. 

Epitaxial layer 

material 
 

 

After deposition of 

epitaxial layer on 

substrate   

Substrate 

  

 (a) Tensile strain (b) Compressive strain 

FIGURE 2.1 – Schematic illustration of two type of strained growth. Adapted from [72]. 

The ratio that determines the increase or decrease of the lattice constant due to in-

plane stress is called Poisson ratio υ, which connects the in-plane and the perpendicular strain: 

      rrr //  zz . (2.3) 

For the commonly used cubic semiconductor materials grown along the [001] 

direction, the perpendicular strain is given by [72]: 

  
 
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The parameter Cij(r), in which i and j are integers, is the elastic stiffness constants of 

the crystalline semiconductor material. 
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The total elastic strain energy in cubic semiconductor materials grown along the [001] 

is given by [74, 75]: 
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For heterojunctions made of two zinc-blended-structure materials, the off-diagonal 

strain components are all zero (εxy = εyz = εzx = 0) due to crystal symmetry. 

 

2.2 Electronic structure parameters 

 

This section deals with the computation of the two input parameters for the 

Schrödinger Equation (2.1), the effective-mass tensor M and the band-edge profile V. These 

parameters are determined from several measured or estimated parameters of the materials 

that compound the structures. The definitions and values of these parameters can be obtained 

in [76–78]. 

The effective mass of a charge carrier is related to the curvature of the dispersion 

relation in which it is moving [78] and can be obtained from the bulk energy dispersion 

defined by [76, 79]: 
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where k represents the wave vector of the particle. Using this procedure, the electron effective 

mass in the conduction (electron) and valence bands (heavy hole and light hole) can be 

approximated in terms of the band parameters by [76]: 
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where Eg(r) is the band gap of the material, F(r) is the Kane parameter, EP(r) is related to the 

electron momentum, ΔSO(r) is the spin-orbit coupling parameter, and the γ(r) variables are the 

Luttinger parameters. The effective-mass tensor has zero off-diagonal terms [80] and, due to 
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strain, its diagonal has the form  **
//

*
// ,,diag  mmmM . The diagonal components of the 

electrons effective-mass tensor, as determined by time-independent perturbation theory [80], 

are given by 
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and 
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where  r*
m  and  r*

//m  are the perpendicular and the in-plane effective masses of the 

electrons, respectively. The remaining components of the effective-mass tensor are zero. The 

Equations (2.8a) and (2.8b) will be used to compute the effective mass of electrons in strained 

InxGa1–xAs that form the QD of InAs/GaAs. In the barrier region (GaAs) the effective masses 

are given by Equation (2.7) as will be shown in Section 3.1. For single InAs/GaAs QD almost 

all the low-lying confined states in the valence bands are dominated by its heavy-hole 

component but for coupled QDs the analysis of the band mixing becomes relevant [81]. 

The strain due to lattice mismatch has a strong effect on the electronic structure of 

semiconductors. The displacement of constituent atoms from their equilibrium positions 

changes the potential created by them and therefore the band structure is modified. When the 

split-off bands are taken into account, the band-edge energies at the Brillouin-zone center 

(k = 0) for electrons, heavy-holes and light-holes bands of strained layers can be computed, 

respectively, by [78, 80]:  

        rrrr hcgc aEV  , (2.9a) 
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In Equations (2.9a)–(2.9c), ac(r), av(r), and b(r) are the deformation potentials and the 

hydrostatic strain that determines the position of the electron and hole levels and biaxial 

strain, whose main influence is on the splitting of the light- and heavy-hole states, are 

respectively defined as: 

        rrrr zzyyxx  h , (2.10a) 
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and 

        rrrr zzyyxx  2b  . (2.10b) 

The temperature effect on the energy gap of a semiconductor material is computed 

using the empiric Varshni equation [76]: 

  
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where A and B are the Varshni parameters, 
0
gE  is the value of the energy gap for theoretical 

absolute zero temperature. The values for all parameters cited in this chapter for several 

semiconductor compounds of family III-V are compiled in Appendix A. Those values were 

gathered from literature [76–78]. 

Ternary alloys in the form ExF1–x have parameter values derived from their 

corresponding binary compounds (E and F) through linear interpolation using the following 

expression: 

       EFFEFE Wx1xTx1TxxT
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where the bowing parameter WEF accounts for the deviation from a linear interpolation 

between the two compounds E and F. 

 

2.3 Photoluminescence 

 

Photoluminescence (PL) spectroscopy is a commonly used technique to characterize 

optical response of various organic and inorganic materials such as insulators and 

semiconductors (including nanostructures: quantum well, quantum wires, and quantum dots) 

[82, 83]. Figure 2.2 shows the common elements of a set up for photoluminescence 

spectroscopy. By probing the QD sample with a laser whose photon energy exceeds the 

fundamental transition energy of the heterostructure or above the barriers, electrons are 

excited to high energy levels generating electrons in the conduction band and holes in the 

valence band. Then, the electrons and holes recombine (radiative transitions) emitting photons 

[84]. The light emitted from the QD sample is then collected and passed through a 

monochromator, which selects a wavelength to transmit to a detector (D). The focal length of 

the monochromator determines the resolution of the system and the grating spacing sets the 

wavelength detection range. For example, a simple monochromator with focal length of 

0.22 m and grating of 1200 groove/mm covers the visible to the near infrared wavelength 

range with an energy resolution of approximately 1 meV [85]. The signal is then sent to a 
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computer controlling the monochromator, scanning through a range of wavelengths, and 

recording the detector’s voltage output corresponding to the wavelength. The data is then 

plotted, producing the sample output spectrum.  

 

FIGURE 2.2 – PL arrangement, with laser, sample and cryostat, monochromator, and detector 

(D). Lens (L) focuses the PL signal; filters Fl and F2 block unwanted laser light; choppers C1 

and C2 modulate the intensity of a light beam. Adapted from [85]. 

Figure 2.3 shows a schematic representation of a QD band structure. The electron in 

the conduction band and the hole in the valence band are attracted to each other by the 

electrostatic Coulomb force and form an exciton. The exciton binding energy is represented 

by the EX parameter in Figure 2.3. Therefore, at low temperature, the energy of the optical 

transition associated to a peak in the PL spectrum can be computed by the following 

expression [86]: 

 XEE  mgnmn hhehhe , (2.13) 

where en is the energy of a confined electron state, hhm is the energy of a confined hole state, 

and EX is the binding energy of the exciton. 

 

 

 

 

 

 

 

 

FIGURE 2.3 – Schematic electronic band structure of a QD. VB and CB stand for valence and 

conduction bands, respectively. 
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2.4 Numerical methods 

 

In this monograph, it is assumed that QDs have cylindrical symmetry with the axial 

coordinate z parallel to the growth direction. This symmetry allows one to write the wave 

function as a product of two functions: 

       21 , zr r , (2.14) 

which enables the separation of the azimuthal component (φ) from the other two variables. 

Then, the eigenstates in the nanostructure can be obtained from the following equations: 
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The first equation (2.15a) has a general solution of the form   
 qim

e02  , where mq 

is the azimuthal quantum number and assumes integer values. The second equation (2.15b) is 

the two-dimensional Schrödinger equation, which is solved numerically. Two numerical 

methods were implemented in this work to solve the Schrödinger equation for comparison and 

validation purpose. The first one is the Finite Element Method. This method is the main 

technique used in this thesis due to its flexibility. Together with a mesh generator, it is 

possible to solve the Schrödinger equation in any geometry with no change in the 

implemented code. The second method is based on a classical method in Physics to solve 

differential equations in which the unknown variable is expanded in terms of a linear 

combination of a certain set of orthogonal base functions [87]. This method will be referenced 

in this work as the Expansion Method and it is applied in the validation section. 

 

2.4.1 Finite Element Method 

 

The Figure 2.4 shows a geometrical model of a simple lens-shaped QD. The left figure 

(a) shows the three-dimensional model of an enclosing cylinder in red color with the front 

removed and the lens-shaped QD in blue. The right figure (b) shows the two-dimensional 

axially symmetric model that generates the left figure (a) by rotation around z-axis. The 

dashed lines at the top and the bottom indicate that the figure was truncated in the vertical 
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direction with the aim to show the details near the QD region. The following boundary 

conditions are imposed: 
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(a) (b) 

FIGURE 2.4 – (a) Three-dimensional model showing the lens-shaped QD in blue color and 

the front removed enclosing cylinder in red. (b) The axially symmetric QD model for our 

FEM implementation, showing the mesh close to the QD. The lines Γ1 indicate where 

boundary condition of Dirichlet type is applied. The lines Γ2 indicate where boundary 

condition of Neumann type are applied. The insets show details of the mesh inside the QD, as 

well as an element τ of the mesh. 

In FEM, the problem domain (Ω) is divided into elements of simple geometry, each of 

which defines a subdomain Ωτ. The nodal variables (dependent variables) and, when 

necessary, their derivatives are computed at each nodal point. In Lagrangian-type elements of 

the first order, the nodal point quantity and position coincide with the vertices of the finite 

element and the wave function is the only nodal variable. Hermitian-type elements have two 

nodal variables: the wave function and its derivative. 

 Inside each finite element, τ, the wave function is expanded in terms of a compact set 

(in a topological space) [88] of base functions, Ni: 
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where np is the number of nodal points in the finite element and τ
i  is the value of the wave 

function computed at each nodal point. The base function has the following properties on the 

nodal points: 

   ijj
τ
i rN , (2.18) 

where δij is Kronecker’s delta function. The base functions for a determined element τ are 

valid only in the limits of this element. This way, the solution for the entire domain is 

obtained by: 
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The Weighted Residual Method [89] was used to transform Equations (2.15b), (2.16a), 

and (2.16b) in the following integral equation: 
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where P is an arbitrary weighting function. After the expansion of the wave function, 

Equation (2.17), the number of equations must be balanced with the number of unknown 

parameters. In this case, a number of weighting functions, equal to the number of nodal points 

times the number of unknown parameters, has to be chosen. To compute the values of these 

weighting functions, the Galerkin method is used, in which the weighting functions inside 

each element are chosen to be equal to the base functions used to describe the state variables 

(
τ
j

τ
j NP  , j = 1, 2, ..., np) resulting in: 
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where en  is the total number of finite elements. Adopting the following notations T, {x}, 

{x}T, and [x] to represent a transpose, a row vector, a column vector, and a matrix, 

respectively, Equation (2.21) can be written as: 
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Therefore, the final matrix equation for the entire domain is given by: 

     TT E ττ  DCBA  , (2.23) 

where  
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2.4.2 Expansion Method 

 

The numerical formulation for the Expansion Method used in this work is the same as 

the one presented by Maia et al. [90] for lens-shaped QDs. Figure 2.4 shows a geometrical 

model of a simple lens-shaped QD with indications of the variables that are used in the 

mathematical formulation of the Expansion Method. The boundary conditions are the same 

shown for Finite Element formulation. 

 

FIGURE 2.5 – Model of a lens-shaped QD (spherical cap from a sphere of radius R) 

with a radius RQD and height HQD inside a large cylinder of radius Rc and height Hc. 

RQD 

HQD 

R 

Rc 
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Assuming cylindrical symmetry and given a complete set of orthonormal base 

functions ϕln(r, z) one can expand any function of ψ1(r, z) in terms of this complete 

orthonormal set: 

    
 


max max

1 1

1 ,,

l

l

n

n

lnln zrazr  , (2.24) 

and aln are the coefficients of the expansion. The orthonormal functions ϕln(r, z) are the large 

cylinder eigenstates: 
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where l and n are the quantity of bases used to describe the wave function in z- and r-

direction, respectively. Hc is the height of the large cylinder containing the substrate material, 

 rkJ nmm qq
 is the Bessel function of the first kind of integral order mq. To satisfy the 

boundary condition on the cylinder surface, nmq
k  is given by 

cR

x
k

nm

nm
q

q
  where nmq

x  is the 

n-th root of Bessel function of order mq. The normalization factor nmq
  is given by: 
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where Rc is the radius of the large cylinder. 

Hence, the Schrödinger Equation (2.15b) can be written as: 
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Multiplying Equation (2.27) by  zrn'l' ,* , integrating over the spatial domain, and 

using the orthonormality condition    
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where nn  is the Kronecker delta function and is equal to 1 if nn   or ll   and 0, 

otherwise. 

Assuming a shorthand notation for the matrix element 

    nl,nllnn'l' HdrdzzrHzr 



 ,ˆ,*   one could write Equation (2.28) in matrix format as 
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 AHA E , (2.29) 

where 
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and 
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After solving the Equation (2.29) one obtains the eigenvalues and eigenvectors of the 

system. The eigenvalues corresponds to the energies (E) of the confined states. The associated 

wave function for each state is computed substituting the corresponding eigenvector into 

Equation (2.24). 
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Additional details about this formulation can be obtained in [90]. 
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3 Methodology and implementation 

 

 

In this thesis, we consider InAs QDs embedded in a GaAs matrix. This system of 

materials is one of the most widely used to build self-assembled QDs [22, 50, 51, 91–97]. To 

solve the problem in an axisymmetric model, the QD is enclosed inside a cylinder at the 

surface of which adequate boundary conditions are imposed to the wave functions. The 

position dependency of the effective mass tensor M and the potential energy V inside the 

cylinder is established through the indium concentration x = x(r). To take into account the 

non-homogeneous composition in the nanostructure, it is considered that x = x(r) vary inside 

both the QD and WL regions allowing thus the simulation of any indium profile, while 

preserving the cylindrical symmetry. For the distribution of the material inside the QD and the 

WL, a grid with an adequate number of monolayers was created within the QD and the WL 

regions. 

The first section of this chapter presents the values of relevant band structure 

parameters related to the binary compounds InAs, GaAs, and the ternary alloy  

InxGa1–xAs used in this monograph. Section 3.2 gives an overview of the computational codes 

implemented to treat the phenomenon of segregation delineated in Chapter 1 as well as some 

results of tests, which validate the computational implementation of the equations and 

methods presented in Chapter 2. Section 3.3 presents the treatment for the WL, in which it is 

adopted the same approach presented by Maia et al. [90] based on the phenomenological 

model described by of Muraki et al. [98]. Section 3.4 presents the framework developed in 

this thesis to study the distribution of indium within self-assembled InAs/GaAs QDs. 

 

3.1 InAs/GaAs material system 

 

The electronic band parameters used for InAs and GaAs are listed in Appendix A. The 

conduction band offset generally adopted in literature and followed in this work is 

ΔEc / ΔEg = 70%, which gives ΔEc = 770 meV between unstrained GaAs and InAs [76, 78]. 

Expressions (2.7a)-(2.7c) and (2.8a)-(2.8b) were used to define electron and holes effective 

masses. The electron and holes confinement potentials were computed using expressions 

(2.9a)-(2.9c) for the InxGa1–xAs strained layers. The lattice constant of InxGa1–xAs is larger 

than the one of GaAs and, consequently, the QD and WL are strained. In order to demonstrate 
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the effect of the strain in the electronic band profile, Figure 3.1 shows the conduction band 

and the valence bands edges, with and without the strain perturbation for a theoretical layer of 

InxGa1-xAs strained on GaAs substrate. In this example, the indium composition (x) of  

InxGa1-xAs layer increases linearly from 0% up to 100% in the growth direction. The strain 

raises the conduction band and breaks the degeneracy of the heavy-hole and the light-hole in 

the valence band. Moreover, the heavy-hole effective masses are also much heavier than the 

effective masses of light-holes meaning greater density of states. Therefore, in this case, the 

heavy-hole states tend to dominate the properties at the valence-band extremum. 

 

FIGURE 3.1 – Conduction and valence band profiles of a GaAs/InxGa1-xAs/GaAs 

heterostructure with and without taking into account lattice mismatch strain. 

Analyzing Figure 3.1, it is worth noting the huge impact that strain has on the 

electronic structure of InAs/GaAs nanostructures. When strain is not taken into account, the 

energy gap of InAs layer is 0.4105 eV and with strain this value increases up to 0.5306 eV. 

An even greater change occurs in the conduction band edge, in which the depth of the 

potential well at the InAs/GaAs interface is 0.7762 eV when strain is disregarded in the 

calculation and decreases to 0.4660 eV when strain is considered. 

Regarding effective mass anisotropy, the values of the electron effective-mass 

components, m  and //m , for InxGa1–xAs as a function of indium concentration (x) are shown 

in Figure 3.2. The m  and //m  values are computed accordingly to Equation (2.8). In 

Figure 3.2 we note that when x = 0 (pure GaAs) the material has isotropic effective mass for 

the electron, but it is anisotropic for any other concentration of indium. 
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FIGURE 3.2 – Perpendicular and parallel components of electron effective mass for  

InxGa1–xAs as a function of indium concentration, x. 

 

3.2 Computational codes 

 

This section presents an overview of the computational codes developed in this work. 

The computer codes developed in this thesis were designed not only to use but also to be 

integrated in a library of classes called sdk-levsoft. The sdk-levsoft library is coded in C++ 

language and was developed at the Laboratório de Engenharia Virtual of Instituto de Estudos 

Avançados. It has modules for manipulation of vectors, lists, sparse matrices, and iterative 

methods for sparse linear systems that permits the use of matrix preconditioning techniques, 

besides the finite element module. Figure 3.3 shows the modules that compose the sdk-levsoft. 

The white boxes indicate the modules that had classes included or modified in this thesis. 

Finite Element
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FIGURE 3.3 – General scheme of the sdk-levsoft library. The white boxes indicate the 

modules that had classes included or modified in this thesis. 
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Besides, a class named CSemiconductorMaterial was created that does not fit in any of 

those modules. It contains a parameter database with values commonly used in literature for 

several III-V binary compound semiconductors and computes the values of these parameters 

for ternary and quaternary alloys based on corresponding binary compound values. It also 

considers the temperature changing the parameters values accordingly. 

In the finite element module, the Hermitian-type element was included. These finite 

elements ensure the BenDaniel-Duke continuity of  r
nm 


*

1
 at interface regions [99]. In 

addition, some methods regarding axial-symmetric integration were added to attend 

Equation (2.23). Figure 3.4 shows part of the classes that compose the finite element module. 

The white boxes indicate the classes that were developed or modified in this thesis. 

 

FIGURE 3.4 – Partial classes of the finite element module. The white boxes indicate the 

classes that were developed or modified in this thesis. 

The FEM Integro-Differential Equation (2.23) was implemented in the phenomenon 

module of the sdk-levsoft in the class CLev_Phen_Schrodinger shown in Figure 3.5. The 

CProject_Schrodinger class derived from CProject_Solver centralizes the methods to read 

and write all the files in disk in this thesis. The classes CLev_Phen_Schrodinger and 

CProject_Schrodinger were implemented in [100] and they were originally designed to solve 

the Schrödinger equation in Cartesian coordinates. In this thesis, we extend these classes to 

solve the Schrödinger equation in cylindrical coordinates using the Finite Element Method 

which formulation was developed in Section 2.4.1. This implementation allows computing the 

electronic states of an axial symmetric QD and it takes into account the effective mass 

anisotropy of the electron in the conduction band. 
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FIGURE 3.5 – Partial classes of the phenomenon and project modules. The white boxes 

indicate the classes that were developed or modified in this thesis. 

The CQuantumDevice class stores the information of all the layers that compose the 

nanostructure. In CQuantumDevice there is a method that creates an object from the class 

CSemiconductorMaterial to obtain the materials properties. The CSemiconductorMaterial 

class computes, for example, the effective masses, Equation (2.8), and the potential energy, 

Equation (2.9), of all materials that compose the nanostructure. 

Another set of classes were created to build automatically the FEM geometrical model 

of the QD nanostructure, shown in Figure 3.6. Currently, it has the capacity to build models of 

QD with shapes of cylinder, cone, and lens. The lens-shaped QD could be constructed either 

from a spherical cap or from a semi-ellipse. All these QD classes are derived from the 

Nanostructure class that also treats quantum wells and wetting layers. The FEM_DOT class 

manages the building of the geometrical model of the complete nanostructure, the finite 

element mesh generation, and the attribution of materials and boundary conditions. The 

CLevDoc class is the interface that connects this module with the sdk-levsoft. 

  

FIGURE 3.6 – Diagram of the classes that treat the automatic building of FEM model. 
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3.2.1 Convergence study of the finite element module 

 

This section presents the results of the convergence tests performed on the 

implemented finite element computer code. The benchmark case that will be presented in this 

section is a standard problem in physics of a particle trapped in an infinite and spherically 

symmetric potential well. This problem allows the solution of the radial Schrödinger equation 

to be written in terms of standard functions. 

 The development of a semi-analytic solution of the Schrödinger equation for the 

infinite spherical potential well is presented in Appendix B. Table 3.1 shows the energy 

values of twenty states confined in an infinite spherical potential well with radius of 10 nm 

computed using the semi-analytic solution. The electronic state with principal quantum 

number n and azimuthal quantum number l is represented as n
lz . The material of the sphere 

used in the computation is InAs, which has electron effective mass 0
*
e / mm  = 0.023. The 

effective mass anisotropy was not considered in these calculations. 

TABLE 3.1 – Energy values obtained from the semi-analytical solution of an infinite 

spherical potential with radius of 10 nm, in eV. n
lz  represents the state with principal quantum 

number n and azimuthal quantum number l (see Appendix B). 

n
lz  n = 1 n = 2 n = 3 n = 4 

l = 0 0.163498 0.653991 1.471479 2.615963 

l = 1 0.334475 0.988638 1.969669 3.277669 

l = 2 0.550273 1.370308 2.515594 3.987431 

l = 3 0.808927 1.797658 3.108334 4.744588 

l = 4 1.109150 2.269592 3.747039 5.548476 

In general, a more refined mesh results in a more accurate solution, but at the expense 

of an increase in computation time. Hence, a compromise must be found in order to do not use 

neither a too sparse mesh that results in inaccurate solutions nor a too dense mesh that leads to 

a long time computations with no gain in accuracy. In order to study the convergence of FEM, 

several meshes were created for the axisymmetric spherical model, as shown in Figure 3.7. 

This figure presents the image of the mesh and the corresponding number of elements and 

density of elements (number of elements per domain area).  
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47 elements 297 elements 1262 elements 6214 elements 35095 elements 

0.15 elem./nm2 0.95 elem./nm2 4.02 elem./nm2 19.78 elem./nm2 
111.71 

elem./nm2 

  

   

(a) (b) (c) (d) (e) 

FIGURE 3.7 – Some meshes created to study the influence of the mesh refinement on the 

convergence of the calculations with FEM. 

In this thesis, we are interested in states with the lowest energy values in relation to the 

conduction or valence band edge of the QD material. The convergence curves of the energy 

values as a function of the mesh density of the four states with lowest energy values are 

shown in Figures 3.8-3.11. These curves of convergence are for the Lagrangian-type elements 

of the first order, which is the simplest 2D finite element available. The ground state ( 1
0z ), 

Figure 3.8, presents the fastest convergence with the computed value of energy in good 

agreement with the semi-analytical value with a mesh density of 20 elem./nm2. Similarly, 

good agreement is obtained with the states 1
1z , 1

2z , and 2
0z . The convergence curves for the 

states 1
1z , 1

2z , and 2
0z  are shown in Figures 3.9-3.11. The absolute differences between the 

energy value computed with FEM with a mesh density of 20 elem./nm2 and corresponding 

energy value computed with the semi-analytical method are 0.00013 eV, 0.00022 eV, and 

0.00038 eV, respectively, for the states 1
1z , 1

2z , and 2
0z . 
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FIGURE 3.8 – Convergence of the ground state 1

0z . 

  

FIGURE 3.9 – Convergence of the ground state 1
1z . 
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FIGURE 3.10 – Convergence of the ground state 1
2z . 

  

FIGURE 3.11 – Convergence of the ground state 2
0z . 

The convergence curves for higher energy states 1
4z , 4

0z , and 4
4z  are shown in Figures 

3.12-3.14. The convergence of the state 
1

4z  is shown in Figure 3.12. For a mesh density of 

20 elem./nm2, the difference between the value of the energy computed with the FEM and the 

semi-analytic model is 0.00254 eV (~0.23%). For the state 4

0z , Figure 3.13, this difference is 

0.01673 eV (~0.64%) for the same mesh density. 
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FIGURE 3.12 – Convergence of the state 
1

4z . 

 

FIGURE 3.13 – Convergence of the state 4

0z . 

The convergence of the state 
4

4z  is shown in Figure 3.14. The wave function of this 

state is the most complex one computed in these test series. The difference between the 

energy value computed with the FEM and the semi-analytic is 0.05615 eV (~1.01%) and 

0.02130 eV (~0.38%) for a mesh density of 20 and 50 elem./nm2, respectively. From these 

results, we fixed the standard mesh density in 20 elem./nm2 which is sufficient to obtain good 

accuracy in energy values at least for the ground and the first excited states which are the 

states that we will be using most in our studies in this monograph. For QD models studied in 

this thesis, a nonuniform mesh is constructed (a mesh refined in the QD/WL-regions and 
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sparser in other regions). The mesh density of 20 elem./nm2 is applied only in the interest 

regions of the QD and WL, where the elements have approximately the same area. 

 

 

FIGURE 3.14 – Convergence of the state 
4

4z . 

The graph of computation time of the FEM solver for the case of infinite spherical 

potential well as a function of the mesh density is shown in Figure 3.15. All the cases were 

executed in a computer equipped with a 64-bit Intel(R) Core(TM) i7 3.20 GHz processor and 

24 GB of RAM. 
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FIGURE 3.15 – Computation time as a function of the mesh density for the case of infinite 

spherical potential well. 
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For illustration purpose, Figure 3.16 presents the image of the probability density that 

was computed with FEM for the state 1

0z . 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.16 – Various views of the probability density computed with FEM for the state 1
0z . 

 

3.2.2 Validation of the finite element module with the Expansion Method 

 

The use of the finite element module to solve the Schrödinger equation was also 

validated with results obtained from another method of resolution named, in this work, as 

Expansion Method (see Chapter 2, Section 2.4.2). The validation case used in this section 

reproduce the results presented by Maia et al. [90], which computed the energies of the 

ground state and first excited state of a lens-shaped QD as a function of its radius (RQD) and 

height (HQD). In this monograph, RQD was varied in the range 4 nm ≤ RQD ≤ 20 nm and HQD 

was varied in the range 3 nm ≤ HQD ≤ 5 nm. These results are regarding homogeneous InAs 

QDs. 

The parameters values of the Expansion Method used to compute the confined-states 

energies and wave functions are the same used in the cited article, which performed a 

convergence study of the Expansion Method and fixed the optimal values to obtain a 

compromise between computational time and precision. These values are lmax = 70, nmax = 50, 

and cylinder dimensions with Rc = Hc = 80 nm. 



 59  

The energy values for ground state and first excited state computed with both 

Expansion Method and FEM are shown in Figures 3.17 and 3.18, respectively. The energies 

values are presented relatively to the GaAs conduction band edge. 
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FIGURE 3.17 – Energies of the ground-state as a function of QD radius for different QD 

heights computed with the Expansion Method (dashed line) and FEM (continuous line). 
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FIGURE 3.18 – Energies of the first excited state as a function of QD radius for different QD 

heights computed with the Expansion Method (dashed line) and FEM (continuous line). 

The results obtained with FEM, implemented in this thesis, show a good agreement 

with the Expansion Method and reproduce the curves presented in [90]. The maximum 
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difference between the energy values computed by the FEM and the Expansion Method is less 

than 2.7% (~3 meV) for the ground state. 

 

3.2.3 The finite element of Hermitian-type 

 

The convergence with Hermitian-type finite elements was studied computing the 

energy values of the ground state and the first excited state in the conduction band of a lens-

shaped QD with height of 4 nm and base radius of 12 nm. The convergence curves of the 

energies of these two states as a function of the mesh density are presented in Figures 3.19 

and 3.20, respectively. The computational time to calculate these energies as a function of 

mesh density are presented in Figure 3.21. As a function of the mesh density, better results are 

obtained with the Hermitian finite elements than with the first order Lagrangian elements. The 

resolution with Hermitian finite elements converges with fewer elements than with 

Lagrangian finite elements. However, these calculations result in a considerable increase of 

computational resources (computation time and memory consumed). The more complex (in 

terms of quantity of operations) base functions allied to the increase in quantity of variables 

are the reasons for this behavior. Lagrangian finite elements have only one variable associated 

to the wave function, while Hermitian finite elements have six variables, one associated to the 

wave function, two associated to the radial and axial derivatives of the wave function, and 

three associated to the second derivatives of the wave function. 
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FIGURE 3.19 – Convergence curve of the ground state as a function of the density of 

elements using first order finite elements of Lagrangian-type (diamond) and Hermitian-type 

(circle). 

 

FIGURE 3.20 – Convergence curve of the first excited state as a function of the density of 

elements using first order finite elements of Lagrangian-type (diamond) and Hermitian-type 

(circle). 

 

FIGURE 3.21 – Computational time to compute the energies of confined states as a function 

of the density of elements using first order finite elements of Lagrangian-type (diamond) and 

Hermitian-type (circle). 
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Despite de fact that the convergence obtained by using Hermitian-type finite elements, 

the time spent to achieve the solution with a mesh density of 10 elem./nm2 is 22.4 times 

higher than the time spent to obtain good solutions by using Lagrangian-type finite elements 

with a mesh density of 20 elem./nm2. The difference in computational time for these orders of 

mesh density is shown in the inset of Figure 3.21. 

In order to execute such tests a 64-bit compiler was used because solving the equation 

system resulting from the Hermitian-type finite elements needs much more than 4GB of 

memory size, which is the limit of memory size that can be allocated by a 32-bit compiler. 

The computational times shown in this section were gathered in a Xi(R) MTower(TM) 2P64X 

Workstation equipped with two Intel(R) Xeon(R) CPU E5-2697 v3 2.60 GHz and 256 GB of 

memory size. 

The Hermitian finite element is necessary only when it is strictly necessary to 

guarantee the BenDaniel-Duke continuity of derivatives of wave functions. In this thesis, it is 

required only the values of energies of confined states that are well computed by Lagrangian 

finite elements. 

 

 

 

3.3 The wetting-layer 

 

In this thesis, the WL is treated using the same approach presented by Maia et al. [90]. 

In that work, the WL is modeled as a one monolayer-thick InAs layer whose thickness and 

composition changes after capping by GaAs due to surface diffusion effect. Offermans et al. 

[101] studied the formation of InAs WLs by cross-sectional scanning tunneling microscopy 

and observed that surface diffusion of indium atoms in these layers was similar to the 

diffusion in QW nanostructures. This diffusion could be perfectly taken into account with the 

phenomenological model of Muraki et al. [98], which has been reported to model very well 

the segregation profile in InAs QWs by several papers in literature [102–104]. It computes the 

indium composition in the n-th monolayer of a QW by: 
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where x0 and Q are the nominal indium composition and the well width in monolayers, 

respectively. The diffusion parameter R depends on the growing machine system besides 
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growing conditions. For the machine system used to grow the sample studied in this work it 

was computed that R = 0.85 for the standard growth conditions in that system [90, 105]. 

Hence, assuming that the nominal indium composition x0 is 1, the indium concentration of the 

n-th monolayer of the WL is represented by the curve shown in Figure 3.22. The 

concentration of indium start at 0.15, quickly decreases to below 0.05 in the 10th monolayer, 

and is practically zero in 20th monolayer. 

 

FIGURE 3.22 – Concentration of indium in the n-th monolayer of the WL. The arrow 

indicates the growth direction. Therefore, n = 1 indicates the lowest layer of the WL. 

In order to test the effect of the WL in the calculated values of the confined states 

energies of a QD we considered models with and without the WL both shown in Figure 3.23. 

In this figure, the WL is represented up to the 20th monolayer. The material attribution 

(indium composition) in the nanostructure is shown in Figure 3.24, in which the WL is visible 

as a thin orange-color band. 

The energy value of the ground state in conduction band and valence band for several 

QD height and base radius are presented in Figure 3.25. The curves with dashed line were 

computed without WL and the ones with continuous line were computed with WL. A similar 

graph with energy values of the first excited state is shown in Figure 3.26. 

From Figures 3.25 and 3.26 we can observe that the energy values for both the ground 

state and the first excited state computed with the WL compared with the corresponding 

energy value computed without the WL are very similar with absolute difference ranging 

between 0.005 eV and 0.014 eV. Besides the computation time to solve a problem with the 
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Figure 3.27 that presents the computational time needed to solve each one of the case set with 

QD height of 3 nm. Hence, for this thesis, we will adopt the simplification of neglecting the 

WL since the focus will be on the computational procedure to study the nonuniform material 

composition of self-assembled QDs, which will be discussed in the next section.  

 

(a) 

 

(b) 

FIGURE 3.23 – FEM model of a lens-shaped QD (a) without WL and (b) with WL. 

   

   

FIGURE 3.24 – Indium composition x (InxGa1–xAs). 
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FIGURE 3.25 – Energy values of the ground state in the conduction band and the valence 

band for several pure InAs QDs with different heights and base radius. The dashed line curves 

were computed without WL and the continuous line with WL. 
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FIGURE 3.26 – Energy values of the first excited state in the conduction band and the valence 

band for several pure InAs QDs with different heights and base radius. The dashed line curves 

were computed without WL and the continuous line with WL. 
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FIGURE 3.27 – Comparison of computation time between a case set calculated without the 

WL (dashed line) and calculated with the WL (continuous line). Case set with QD height of 

3 nm. 

 

3.4 Nonuniform indium distribution within QD 

 

The intermixing between the film and the surrounding layers as well as the surface 

diffusion of indium atoms [98, 106, 107] are important to study self-assembled InAs/GaAs 

QDs because these phenomena modifies the nominal indium concentration, and consequently 

the electronic band structure of these nanostructures [62]. Moreover, the understanding of 

how indium atoms are distributed in the grown nanostructure is essential to obtain tailor-made 

optical properties in order to optimize the device performance. There are several experimental 

papers in literature aimed to study the nonuniform material composition of self-assembled 

QDs. However, due to the complex material distribution and the small spatial dimensions of 

QDs, there is not a consensus about either their real shape or how the indium atoms are 

distributed within these structures [67, 68, 108] . Only a small number of theoretical papers 

focuses on the material distribution, but there is no direct comparison with experimental data. 

In this thesis we explore two models of indium distribution, inspired in the results presented 

by Giddings et al. [68] and by Blokland et al. [67]. 

Giddings et al. [68] studied the composition of InAs/GaAs QDs samples through 

cross-sectional scanning tunneling microscopy and atom probe tomography and concluded 

that the core of the QD is indium rich, starting from 0% at the border and reaching 60% at the 
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center. We wrote a mathematical model for this distribution assuming a Gaussian distribution 

along the radial and vertical directions: 

  
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where bz = αHQD is the position of the center of the Gaussian function, QD
2

1
Hz    is the 

standard deviation, and xmax (xmin) is the maximum (minimum) concentration of dot material 

along the z direction. The parameter α defines the position of xmax: a value of α = 1 places the 

peak at the top of the QD, while α = 0.5 shifts the peak position to the center of the QD. The 

second step consists of computing the concentration of the dot material at a point of 

coordinates (r, z) using the expression 
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where  zrr QD
2

1
  . The function rQD(z) returns the effective value of the QD radius for a 

given height z and depends on the QD format. The parameter β is a factor that adjusts the 

width of the Gaussian function: a value of β = 1 restricts the width of the Gaussian curve to 

half of the QD radius; a value of β = 2 makes its width equal to the QD radius. The set (α = 

0.5, β = 1, γ = 1, X = 0.6) allows to reproduce approximately the indium distribution proposed 

by Giddings et al. [68], Figure 3.28-a. 

Blokland et al. [67] also studied the composition of self-assembled InAs QDs based on 

cross-sectional scanning tunneling microscopy and reported an indium composition that starts 

at 70% at the center of the base of the QDs and increases linearly to 100% at their top, while 

the indium concentration is only 25% at the base edge. The mathematical model of this 

distribution assumes that the value of x(r, z) corresponding to the indium concentration at a 

position (r, z) inside a QD is a weighted arithmetic average of two indium concentrations 

calculated with a rule of three applied both to the radial coordinate r and to the axial 

coordinate z. Considering that the origin of the coordinate system is located at the center of 

the base of the QD, the equation for this indium profile is given by: 
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xr,max, xr,min and xz,max, xz,min correspond to the maximum and minimum values of the indium 

concentration along the radial and vertical directions, respectively. The X parameter is used to 

change the value of the maximum of the indium concentration, while the γ and the β 

parameters have influence on the steepness of the indium distribution along the vertical and 

radial directions, respectively. The set (β = 1, γ = 1, X = 1) reproduces approximately the 

indium distribution proposed by Blokland, Figure 3.28-b. 

 

(a) 

 

(b) 

FIGURE 3.28 – Models of indium distribution within QDs: (a) Giddings, (b) Blokland.  

The theoretical results obtained by us with these two models are presented in the next 

chapter. Considering the parameters presented in the previous paragraphs for each model, we 

could not reproduce the experimental PL spectrum of a reference QD sample. 

In the next step, we mathematically modeled the problem in the form of an inverse 

problem in order to verify if there are sets of parameters (α, β, γ, X) for the Giddings 

distribution model or (β, γ, X) for the Blokland distribution model that allow to reproduce the 

experimental PL spectrum. The details are described in the following sections. 

 

3.4.1 The inverse problem 

 

Inverse problems can be described as problems where the response of the system is 

known but not the conditions that led to it [109]. As previously mentioned, self-assembled 

QDs have a non-homogeneous material composition that cannot be measured exactly because, 

in general, the very small volume of the QDs makes the signal of these measurements almost 

insensitive to the gradient of the indium composition inside these nanostructures [51–54]. The 

inverse problem approaches developed in this thesis aims to obtain a material composition 

profile inside a self-assembled QD sample that reproduces experimental photoluminescence 

(PL) transition energy peaks. Besides PL, additional experimental data, such as, high-

resolution Transmission Electron Microscopy (TEM) and/or Scanning Tunneling Microscopy 

(STM) obtained from a QD sample can also contribute to solve the inverse problem. As we 

will see later, the image is not strictly necessary and aims to give a hint about the dimensions 



 69  

of the QD. With these inputs, the solver of the inverse problem iteratively adjusts the 

concentration and distribution of material inside the QD until it finds a resulting electronic 

configuration that generates PL peaks that matches the measured ones. Table 3.1 shows the 

physical system, the governing physics, and the physical quantity that we are interested in this 

thesis, and what we actually consider to formulate the inverse problem. 

TABLE 3.1 – Components of the inverse problem. 

Physical system Governing equations Physical quantity Observed data 

QD material composition 

profile 

Schrödinger equation, 

classical elasticity 

equation 

Energy PL peaks 

 

In order to solve the inverse problem, metaheuristics are employed. Metaheuristics are 

a general set of stochastic procedures, often nature-inspired, designed to obtain approximate 

solutions of complex optimization problems [110–112]. In general, several runs of a given 

metaheuristics are executed in order to take into account the randomness of the stochastic 

procedure. The strategy adopted in this work involves the use of three different 

metaheuristics, each one with a certain number of runs. The three metaheuristics are: particle 

swarm optimization (PSO) [113, 114], black hole optimization (BH) [115], and genetic 

algorithm (GA) [116, 117]. 

An inverse problem can be formulated as a minimization (or maximization) problem. 

An objective function (OF) represents a goal to be achieved and a set of constraining relations 

can be used to impose additional conditions associated to the specific problem. Therefore, a 

good approximate solution is the one that minimizes (or maximizes) the objective function 

subjected to specific constraints. 

Two inverse problems are considered in this document. The first approach makes use 

of data from the experimental PL energy peaks and an estimative of the QD size based on a 

high-resolution image. In this case, the objective function , OF, is written as: 
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where Pi and exp
iP  are the energy values of the i-th computed and experimental PL peaks, 

respectively, EX is the exciton binding energy, and exp
ii 1,   is the difference in energy between 

the i-th and (i–1)-th experimental peaks. We applied this formulation to study an InAs/GaAs 



 70 

QD sample, obtaining insights about the distribution of material within the nanostructure. 

These results were published in [70], and a summary is presented in the results section. In 

order to obtain coherent results, this approach needs the approximate dimensions of the QD as 

input parameters because there is not a mechanism to drive the system in the direction of a 

distribution with an indium-rich core as observed in high-resolution TEM images of QD 

sample.  

A second approach was explored which includes the value of the elastic potential 

energy U, due to the lattice parameter misfit inside the QD (Chapter 2, Section 2.1), in the 

objective function. The minimum value of the elastic potential energy is unknown and it is 

certainly not zero. In order to take into account this uncertainty, the objective function was 

changed to the form presented in Equation (3.6).  

  UiF PdO  . (3.6) 

The penalty function d is related to the photoluminescence and is given by: 

  
 







































n

i

i

n

i

i

n

i

i

i

P

PP

Pd

1

11

if,1

if,exp1exp

, (3.7) 

where  Xiii EPPP 
exp

 and ε is associated to the experimental error. The variable σ is 

a parameter to adjust the sensitivity of the objective function to variations in ΔPi. We set this 

parameter value to three after some rough analysis. 

In order to compute the energy values of the PL peaks, the material distribution within 

the QD has to be defined. Both models presented in the previous section were used with 

different values of the parameters set (σ, β, γ, X). The basic idea is to find the set that 

minimizes OF. Once defined the indium distribution, we compute the corresponding 

anisotropic effective masses and potentials [Equations (2.8) and (2.9)] and solve the 

Schrödinger equation using FEM [Equation (2.23)] for both the conduction and valence 

bands. The final step is the computation of the photoluminescence peaks transition energies 

[Equation (2.13)]. Along the process, the metaheuristics guide the choice of the sets of 

parameters, trying to minimize OF. 

As mentioned previously, three different metaheuristics were employed to solve 

Equations (3.5) and (3.6). All of them are implemented in an optimization library here named 

Optimization Framework used in this thesis. The Optimization Framework was developed at 
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the Virtual Engineering Laboratory (LEV: Laboratório de Engenharia Virtual) in the Instituto 

de Estudos Avançados/DCTA. For each metaheuristic, we execute five runs. 

 

3.4.2 Software implementation 

 

The flowchart of the inverse problem algorithm developed in this work is shown in 

Figure 3.29. The flowchart has three boxes: metaheuristic framework, FEM solver, and 

objective function. The metaheuristic framework implements several metaheuristics. A 

configuration file allows to define the metaheuristics chosen to accomplish a given study as 

well as the control parameters of the metaheuristics and the parameters of the problem which 

have to be found. In this work, we use three metaheuristics already implemented in the 

framework. The difference among the metaheuristics is in the procedure that they adopt to 

update the new set of values of the unknown parameters (σ, β, γ, X). The update mechanisms 

of these metaheuristics are out of the scope of this work and hence they will not be discussed 

here. For those who are interested, additional information on each metaheuristic can be found 

in [113–117]. The Boxes “FEM solver” and “objective function” include the computer codes 

that were described in previous sections (Sections 3.2 and 3.4.1, respectively) of this chapter. 

For the stopping criteria it was used the maximum number of iterations, set in 1,000 

and the maximum number of consecutive iterations for which the objective function does not 

change, set in 100. 
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FIGURE 3.29 – Flowchart of the inverse problem. 
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4 Results and discussion 

 

The reference sample used in this work consists of InAs/GaAs QDs grown by MBE. 

The growing details are described elsewhere [108]. The experimental data of a low-

temperature PL measurement (Figure 4.1-a) of this sample shows a spectrum having two well 

separated excitonic emission peaks: the strongest one, around 1.068 eV, was assigned to the 

e1hh1 transition, while the lowest one, close to 1.141 eV, was related to the recombination 

from the first excited state (e2hh1). Figure 4.1-b shows a high-resolution cross-section TEM 

image of this sample, from which we could estimate the average base diameter and height of 

our buried QD, about 20 and 4 nm, respectively. 

 

 

(a) 

 

(b) 

FIGURE 4.1 – (a) Low-temperature PL spectrum of the reference QD sample. (b) TEM image 

of the same sample showing a typical QD after GaAs capping. The full line shows the lens 

shape adopted in the first simulations, while the dashed line represents the disk shape used in 

the last simulations of this monograph. (Reproduced from [70].) 

Figures 4.2-a and 4.2-b represents the indium distribution in a lens-shaped QD 

obtained by using the Giddings model with the parameters (α = 0.5, β = 1, γ = 1, X = 0.6) and 

a homogeneous pure InAs distribution, respectively. The computer codes developed in this 

work are used to calculate the transition energies of lens-shaped QDs as a function of its base 

radius RQD for height HQD = 3, 4, and 5 nm for both proposed indium distributions. The results 

are plotted in Figure 4.2-c. The e1hh1 and e2hh1 emission energies observed in PL spectrum 

are also indicated as horizontal dashed lines across the figure, to be used as reference values. 

As can be seen in Figure 4.2, only one case (RQD = 4 nm and HQD = 3 nm) shows a result that 
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is close to the experimental e1hh1 transition energy when a homogeneous InAs distribution is 

assumed (empty symbols). However, such QD dimensions are far from the values estimated 

in the TEM image of the reference sample (RQD = 10 nm and HQD = 4 nm). This clearly 

suggests that a non-homogeneous indium distribution has to be taken into account in order to 

reproduce the experimental optical data. The results from the Giddings model show a 

blueshift when compared to the respective values obtained with the uniform InAs distribution, 

mostly due to the fact of lower average indium concentration in the QD, which results in a 

larger band gap. Moreover, the potential well of the electrons in the Giddings model with 

these parameter values is shallower. In this case, we find only one confined state. 
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(c) 

FIGURE 4.2 – Energy values of the fundamental transition energy e1hh1 from the ground 

state (e1) in conduction band to the first heavy-hole state (hh1) in the valence band for several 

QD heights and base radii. Comparison between the Giddings model and pure InAs QD 

results. 

Figures 4.3-a and 4.3-b represents the indium distribution in a lens-shaped QD 

obtained by using the Blokland model with the parameters (β, γ, X) all equal 1 and a 

homogeneous pure InAs distribution. Again, the computer codes developed in this work are 
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used to calculate the transition energies of lens-shaped QDs as a function of its base radius 

RQD for height HQD = 3, 4, and 5 nm for this indium distribution and the results were 

compared to the values already computed for the homogeneous pure InAs distribution. 

 

(a) 

 

(b) 

 

(c) 

FIGURE 4.3 – Transition energies e1hh1 from the ground state (e1) in conduction band to the 

first heavy-hole state (hh1) in the valence band and e2hh1 from the first excited state (e2) in 

conduction band to the first heavy-hole state (hh1) in the valence band for several QD heights 

and base radii. Comparison between the Blokland model and pure InAs QD results. 

Figure 4.3 revels that the theoretical data obtained with the Blokland model of non-

homogeneous indium distribution have two matches for e1hh1 transition. One case of a QD 

with height of 3 nm and base radius of approximately 7 nm and the other case of a QD with 

height of 4 nm and base radius of approximately 5 nm. But again, these dimensions are far 

from what we observed with the TEM images. Moreover, none of the cases matched the 

e2hh1 transition.  

We solve the inverse problem, Equation (3.5), for a lens shaped QD with base radius 

RQD of 10 nm and height HQD of 4 nm considering both the Giddings and Blokland models, 
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trying to find sets of parameters (α, β, γ, X) that allow to reproduce the experimental PL 

peaks. The range of variation of each parameter of the Giddings model is: 

.0.21.0

,0.21.0

,0.21.0

,0.21.0









X







 

The values of parameters and objective function for the best results obtained from the 

Giddings model are presented in Table 4.1. All these cases matched the experimental PL 

peaks with difference on the order of 1 meV. The corresponding image of the indium 

distribution profile for each case identified by the key “Case_ID” are presented in Figure 4.4. 

TABLE 4.1 – Values of parameters α, β, γ, and Χ for the cases with smallest values of 

objective function for a lens-shaped QD (RQD = 10 nm, HQD = 4 nm). 

Case_ID α β γ Χ OF 

L_PSO_t3 0.4092 1.5057 0.2790 1.5452 8.70x10–7 

L_PSO_t4 0.4429 1.6529 0.2787 1.5158 4.70x10–6 

L_PSO_t0 0.3158 1.2201 0.2661 1.7647 2.99x10–6 

L_BH_t0 0.3382 1.4916 0.3262 1.2587 5.09x10–4 

L_GA_t4 0.4131 1.6971 0.3024 1.3315 6.28x10–4 

L_GA_t2 0.3827 1.6430 0.3294 1.2232 7.73x10–4 

L_BH_t1 0.3165 1.3772 0.3085 1.3786 7.79x10–4 

 

All the cases presented in Table 4.1 present a value of parameter X greater than 1 

indicating an indium concentration higher than 100%, which is of course physically 

unrealistic. When that happens, the program automatically truncates the Gaussian curve where 

the value is greater than 1 and limits the indium content to 100%. This actually contributes to 

increase the average indium concentration and broadens the region of the QD where the 

indium content is maximum. 

A maximum indium concentration of 100% instead of 60% is coherent to the fact that 

the maximum concentration (60%) originally proposed by Giddings et al. might be 

underestimated since the samples were measured by XSTM. For such an experiment, the 
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samples need to be cleaved in situ, and the exposed surface might pass anywhere within the 

QDs (close to the border or right through their center). 

 

Case_ID Image 

L_PSO_t3 

 

L_PSO_t4 

 

L_PSO_t0 

 

L_BH_t0 

 

L_GA_t4 

 

L_GA_t2 

 

L_BH_t1 

 

FIGURE 4.4 – Theoretical results of indium distribution that reproduce the experimental PL 

peaks according to the Giddings model using the parameters values presented in Table 4.1. 
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There are many possible solutions to the problem. Although all of them provided the 

right values for e1hh1 and e2hh1, the fact that there are 4 fitting parameters allows us the 

possibility to make minor changes to any two (or more) of those four parameters to obtain 

another valid solution, but all of the obtained results are qualitatively similar and have fitting 

parameters showing a variation of the order of 10-20%. A closer look at the figures in 

Figure 4.4 reveals that the indium concentration at the top of the QD goes to zero before 

reaching the maximum height of 4 nm, what actually makes the QD slightly lower and flatter 

than the lens shape initially adopted in the calculations. In that way, the QD looks like a 

truncated cone, and might even be approximated by a disk, as sometimes found in the 

literature [36, 68]. When the distribution profile, characterized by the values of parameters α, 

β, γ, and Χ presented in Table 4.1, is used to distribute material in a disk shaped QD we 

observed that the theoretical results fits very well with the experimental data for a QD with 

RQD = 8 nm and HQD = 4 nm (see [70] for more details). This is consistent to the fact that, 

though the QD appearing in the TEM image of the reference sample was initially supposed to 

have a lens shape (with a radius and height of RQD = 10 nm and HQD = 4 nm, respectively) it 

might actually be intuitively better approximated by a small disk with RQD = 8 nm and 

HQD = 4 nm, as shown in Figure 4.1-b. 

Executing the inverse problem considering a disk shaped QD with base radius of 8 nm 

and height of 4 nm generated the results presented in Table 4.2. The respective images of the 

material profile are presented in Figure 4.5. The parameter α in the case of QD with the shape 

of a disk has a minimum effect since this format has symmetry along the growth direction, 

which is not the case for lens-shaped QD. Hence, the values of parameters β, γ, and Χ 

maintain the original variation of the order of 10-20% as previously stated although the 

difference between the values of α presented in Table 4.2 are greater than 50%. 

TABLE 4.2 – Values of parameters α, β, γ, and Χ for the cases with smallest values of 

objective function for a disk-shaped QD (RQD = 8 nm, HQD = 4 nm). 

Case_ID α β γ Χ OF 

D_PSO_t3 0.4669 1.4512 0.2906 1.4554 1.11x10–5 

D_PSO_t1 0.3278 1.4704 0.2920 1.4496 2.11x10–5 

D_PSO_t0 0.6389 1.3937 0.2730 1.6158 1.75x10–4 
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Case_ID Image 

D_PSO_t3 

 

D_PSO_t1 

 

D_PSO_t0 

 

FIGURE 4.5 – Theoretical results of indium distribution that reproduce the experimental PL 

peaks according to the Giddings model using the parameters values presented in Table 4.2. 

 

The set of solutions in Tables 4.1 and 4.2 can be described as  = 0.4 ± 0.1, 

 = 1.5 ± 0.2,  = 0.29 ± 0.02 and X = 1.5 ± 0.2. Despite the variation of the parameters, the 

indium profiles are still qualitatively very similar and in good agreement with the PL data and 

the experimental results of the literature (elongated indium-rich core). 

We have also solved the inverse problem with the Blokland model. The range of 

variation of each parameter of the model is: 

.0.21.0

,0.21.0

,0.21.0







X





 

With this range of parameters, we allowed the indium concentration to vary from 0% 

to 70% at the center of the QD base, and from 0 to 50% in the border of the base. However, 

even with this flexibility in the parameters values we did not find any solution with this 

model. 
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4.1 The elastic potential energy 

 

The results of computation of the elastic potential energy for the cases presented in the 

previous section are presented in Figure 4.6, in which the image of the indium profile are 

repeated aiming to help the reader to compare the results. 

 

Case_ID Image U (J) [U (eV)] 

L_PSO_t3 

 

2.87x10–16
 [1789.9] 
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3.04x10–16
 [1894.5] 
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2.74x10–16
 [1713.0] 

L_BH_t0 

 

2.27x10–16
 [1415.3] 

L_GA_t4 

 

2.69x10–16
 [1680.0] 

L_GA_t2 

 

2.32x10–16
 [1447.2] 

L_BH_t1 

 

2.38x10–16
 [1485.0] 
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D_PSO_t3 

 

2.16x10–16
 [1349.6] 

D_PSO_t1 

 

2.21x10–16
 [1378.2] 

D_PSO_t0 

 

2.44x10–16
 [1522.1] 

FIGURE 4.6 – Profile of indium distribution and elastic potential energy for the best solution 

found according to the Giddings model using the parameters values presented in Tables 4.1 

and 4.2. 

 

Assuming that the indium distribution is associated with a minimization of the elastic 

potential energy, we can elect the best configuration among the results presented previously. 

In Figure 4.6 the case with the minimum elastic potential energy is the one identified by 

“D_PSO_t3”. From this set of solutions, the average elastic potential energy is 

(2.5 ± 0.3) x10–16 J. 

The inclusion of the elastic potential energy, Equation (2.5), into the objective 

function, Equation (3.6), is a step forward into the challenge to determine the non-uniform 

indium distribution inside self-assembled QDs. In order to maintain the original formulation 

of the Giddings model presented in section 3.4 and the meaning of the parameters β and γ, we 

define a large cylindrical region used just for reference, which is much greater than the 

expected dimensions of the QD. We let the inverse problem adjust automatically the indium 

content inside this region, i.e., the shape and size of the QD are determined freely by the 

minimization process. We maintain the labels RQD and HQD, but now they represent the size of 

the reference cylinder. Since the α parameter has little impact on the energy values for disk-

shaped QDs (see results presented previously in this chapter), the α parameter value was fixed 

in 0.5, locating the peak of the Gaussian curve exactly at the middle of the cylindrical region 

in the growth direction. The values of the parameters α, β, γ, and Χ for the representative cases 

obtained by solving the inverse problem and ordered by the computed elastic potential energy 

are presented in Table 4.3. In order to allow direct comparison with the previous cases, the 
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parameters γ and α were multiplied by HQD, and the parameter β was multiplied by RQD. The 

best result (“D_PSO_t3”) published in [70] was included for comparison with these new 

results. The respective images of the material distribution profile are presented in Figure 4.7. 

All these results match precisely the two PL peaks. Notice that for “D_PSO_t3” the indium 

distribution seems to be clipped in the r-direction. However, it is a natural consequence of the 

approach adopted by the first inverse problem model for which the region of the QD has to be 

previously defined in order to obtain results compatible with TEM images. 

TABLE 4.3 – Values of parameters α, β∙RQD, γ∙HQD, and Χ for the best cases ordered by 

objective function (RQD = 20 nm, HQD = 10 nm, *RQD = 8 nm, *HQD = 4 nm). 

Case_ID α∙HQD (nm) β∙RQD (nm) γ∙HQD (nm) Χ U (eV) 

L_EA_16 5.000 11.123 1.845 1.0000 524.6 

L_PSO_08 5.000 11.008 1.697 1.0477 598.0 

L_PSO_05 5.000 10.782 1.503 1.1397 737.3 

L_PSO_07 5.000 10.750 1.487 1.1509 751.0 

L_EA_10 5.000 10.744 1.486 1.1521 752.2 

L_PSO_09 5.000 10.638 1.424 1.1964 814.3 

L_EA_11 5.000 10.222 1.275 1.3577 997.5 

L_PSO_03 5.000 10.184 1.257 1.3814 1027.3 

L_PSO_01 5.000 10.012 1.214 1.4507 1095.1 

*D_PSO_t3 1.868 11.610 1.162 1.4554 1349.6 

L_EA_12 5.000 9.043 1.026 1.9993 1507.5 

* Result with minimum objective function obtained from the inverse problem without elastic 

potential energy 
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L_EA_12 

 
* Best result obtained from the inverse problem without elastic potential energy 

FIGURE 4.7 – Theoretical results of indium distribution according to the Giddings model  

that reproduce the experimental PL peaks and minimizing the elastic potential energy, using 

the parameters values presented in Table 4.3. 

 

The best solution presents an elastic potential energy five times smaller than the 

previous results, Figure 4.6. It is possible to observe a trend in the data presented in Table 4.3 

and Figure 4.7. The strain energy is stronger when there is a heavy concentration of indium in 

the QD core as can be seen in the case “L_EA_12”. This is evidenced by the high value of X 

parameter, which is 1.9993, greater than 1 meaning that the distribution should contain a 

broader region where the indium content is maximum (100%, pure InAs). It is quite clear the 

direct correlation between the parameter X and the elastic potential energy evidenced in graph 

shown in Figure 4.8, in which the minimum elastic potential energy was achieved with the 

configuration with the minimum value of the parameter X. The behavior of β and γ as a 

function of X are shown in Figure 4.9, which indicates that as X decreases both variables 

increase. On other words, as the region where the maximum content decreases, the QD height 

and radius increase due to diffusion of indium atoms to the nearby regions, conserving 

approximately the total quantity of indium. This can be observed in the Figure 4.10 in which 

the cases with the greatest elastic potential energy (“L_EA_12”) and the one with smallest 

(“L_EA_16”) are reproduced together in order to facilitate the comparison. A small rectangle 

(dotted lines) with height of 4 nm and length of 10 nm was drawn around the indium 

distribution and we can observe that the indium distribution of the case “L_EA_16” occupies 

approximately the region of the small rectangle. This is a very interesting result because the 

best configuration found by the inverse problem has approximately the dimensions observed 

in the TEM image and it converged to this solution naturally without imposition of a QD size. 

 



 85  

 

FIGURE 4.8 – Plot of the elastic potential energy as a function of the value of parameter X. 

 

FIGURE 4.9 – Plots of the parameters β (diamond) and γ (circle) as a function of the value of 

parameter X. 
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L_EA_16 

 

L_EA_12 

 

FIGURE 4.10 – Comparison between the case with the smallest (“L_EA_16”) elastic 

potential energy and the greater (“L_EA_12”) one. Dimensions (height x length) of rectangle 

with continuous lines: 10 nm x 20 nm. Dimension of rectangle with dotted lines: 

4 nm x 10 nm. 

The strain distribution for the case “L_EA_16” is presented in Figure 4.11. In the 

region near the center of the QD there is a compressive (negative εxx) strain in the radial plane, 

Equation (2.2), and a tensile strain (positive εzz) in the growth direction, Equation (2.3). The 

strain distribution trends to minimize the strain at the QD center. 

Strain εxx 

 

Strain εzz 

 

FIGURE 4.11 – Strain distribution for the case “L_EA_16”. Dimensions (height x length) of a 

rectangle with continuous lines: 10 nm x 20 nm. Dimension of rectangle with dotted lines: 

4 nm x 10 nm. 
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5 Conclusion and future works 

 

 

The better understanding of the non-homogeneity in the composition of self-assembled 

QDs is essential to improve the performance of QD based devices since they have direct 

impact on the eigenstates confined in these nanostructures. In this context, this thesis 

developed a methodology to estimate the 3D indium distribution in a self-assembled QD, 

based on the solution of an inverse problem and computation of the wave functions 

considering nonuniformity in the indium distribution and anisotropic strain in the lattice. 

Defined the properties associated to the QD, e.g., indium distribution, material strain, and 

electronic and hole bands, a finite element code was used to compute the energy of the 

quantum states of the conductive and the valence bands. The inverse problem was solved by 

using three different metaheuristics, improving the quality of the solutions. The three methods 

present compatible solutions in all tests carried out.  

Two models of indium distribution within the QD were adopted in this work. These 

models, based on published papers, present different patterns of indium distribution, which 

should have impact on the electronic properties of the self-assembled structures. These 

models were parametrized and the set of parameters which allows to reproduce, at least 

qualitatively, the indium concentration proposed by the original authors were identified. It is 

worthwhile to mention that these set of parameters were not able to reproduce the 

experimental spectrum of photoluminescence. 

Two models of inverse problem were proposed in this thesis. The first one needs a 

minimum of two inputs from a QD sample: a photoluminescence spectrum, and an 

approximate size of the QD. The indium distribution is established by evaluating the 

adequacy of each tentative distribution in terms of the energy of the photoluminescence 

peaks. In this case, there are several solutions for this problem and the experimental 

estimative of the QD size allows to obtain a subset of solutions compatible with the actual 

experimental data. The second model of inverse problem needs only one input: the 

photoluminescence spectrum. This last model takes into account the minimization of the 

elastic potential energy that remains after the coalescence of the self-assembled QD. The 

energy of the photoluminescence peaks are used to penalize tentative solutions that do not fit 

well the peaks energy. In this work, the tentative solutions are penalized by using 

multiplicative function, which takes the value 1 if the energy is compatible with the estimated 
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experimental error and has an exponential behavior as a function of the difference between 

the experimental and calculated peaks.  

All solutions obtained from the two inverse problem formulations display indium 

distribution profiles qualitatively very similar and present good agreement with the PL data 

and the experimental results of the literature (elongated indium-rich core). Additionally, the 

second inverse problem formulation allows to obtain naturally a QD size which is in very 

good agreement with the size estimated from TEM image. 

Moreover, only the Giddings model allows to obtain good solutions by the inverse 

problem formulations. We could not obtain solutions that resemble the distribution of indium 

proposed by Blokland et al. [70].  

The methodology developed led to a novel and up-to-date computer program that can 

retrieve the qualitative and quantitative nature of a self-assembled QD sample. To the best of 

our knowledge, this is the first implementation that can take into account both the lateral and 

radial non-homogeneous composition within a QD and use this information to find a 

configuration that attends to multiple objectives such as the determination of the QD 

dimension for a given QD shape and to estimate the value of the energy peaks observed in PL 

measurements. 

The computer program was built to take into account the WL and also to guarantee 

that the BenDaniel-Duke boundary condition on interfaces be respected. It was shown that 

both the WL and the imposition of the BenDaniel-Duke boundary condition have little impact 

on the energy values of confined states and its use increases too much the computational time. 

The WL might have a significant influence in studies of structures such as dots-in-a-well and 

vertically aligned QDs in which there is a coupling of the wave functions from several 

nanostructures. The BenDaniel-Duke continuity of the wave function might have influence 

when computing the dark current, which depends on the wave function at regions of interface. 

The WL and the BenDaniel-Duke continuity condition were not used in this work to evaluate 

the indium distribution within the QD. 

Using the computational program we confirmed that the hypothesis of QDs made of 

pure InAs is incompatible with the available optical and structural data of an InAs/GaAs QDs 

sample grown by MBE, and that a non-homogeneous composition profile must be taken into 

account. A study including the WL could be executed with minor modifications in the current 

computer codes since all the necessary tools are already implemented. 

There are several improvements that can be implemented in the developed program 

such as the inclusion of a self-consistent computation of the excitonic binding energy in QDs 
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but the first in list is the development and implementation of a method to compute the 

interband oscillator strength, which will allow to compute also the relative peak intensities of 

the PL spectra. Such additional tool will include information, which can be used as additional 

restrictions to solve the inverse problem. 

A real three-dimensional FEM model will be necessary in order to compute lateral 

coupling of QDs but other coupling between nanostructures can be already be studied such as 

dots-in-a-well and vertical aligned QDs. 

 

5.1 Dots-in-a-well nanostructures 

 

Dots-in-a-well (DWELL) is a nanostructure in which QDs are embedded inside a 

quantum well (QW). Optical transitions in a DWELL can happen between states of the QD 

and between a state of the QD and a state of the QW. DWELL structure made of InAs QDs 

within a In0.15Ga0.85As QW has been reported in several papers for use in both infrared 

detector [118–120] and laser [121] device applications. In an experimental work [122], a 

InAs/In0.15Ga0.85As/GaAs DWELL photodetector was tuned to detect radiation with 

wavelength from 2-3 µm to 8-12 µm. This structure was designed to detect radiation through 

transitions between a state of QD and a state of the QW and selection of the wavelength was 

done by fine-tuning the QW width in the range between 30 Å to 50 Å. The intraband optical 

transitions of DWELL was extensively studied in [123] for different sizes of QDs and QWs. It 

also studied the effect of the position of the QD inside the QW, computing the optical 

absorption spectra with the QD positioned at the bottom of the QW and the QD positioned 

near the top inside the QW. The conclusion was that the spectra of absorption have weak 

dependence on both the QW size and the position of the QD (at the bottom or at the top) 

inside the QW. On the other hand, a stronger dependency was found between the QD size and 

the optical absorption spectra. However, the non-homogeneity in composition of QDs was not 

taken into account yet in the literature. A further insight from the optical transitions might be 

achieved including the non-homogeneity in QD composition into the computation of 

electronic states of DWELL nanostructures. 

 

 

 



 90 

5.2 Vertically aligned QDs 

 

The vertical alignment of QDs is a subject of great interest because it was found to 

enhance performance of devices such as light emitting diodes, lasers, infrared detectors, and 

solar cells [124–130]. Besides, the growth mechanism of these structures is relatively easy 

because the intrinsic strain in the formation of self-assembled QDs tends naturally to align 

vertically the QDs when a layer of QDs array is grown over the top of a previous one [131], 

leading to a formation of an array-like assembly of similar but not exactly equal vertical QDs 

as reported in [67]. The effects of the thickness of the space layers that vertically separate the 

QDs were studied in [132]. A theoretical study of the electronic structure of coupled 

pyramidal-shaped QDs on wetting layers is presented in [133]. The effect of the non-

homogeneity in composition of QDs in vertically coupled QDs can be studied almost 

immediately with the computer code developed in this thesis. 
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Appendix A – Semiconductor parameters values 

 

 

TABLE A.1 – Values of parameters 
0
gE , A and B. Sources [76, 78]. 

Compound 
0
gE  (eV) A (eV/K) B (K) 

GaAs 1.519 0.5405x10–3 204 

AlAs 3.099 0.885x10–3 530 

InAs 0.4105 0.276x10–3 93 

GaP 2.886 
0
gE + 0.1081[1–coth(164/T)] 

AlP 3.63 0.5771x10–3 372 

InP 1.4236 0.363x10–3 162 

GaSb 0.812 0.417x10–3 140 

AlSb 2.386 0.42x10–3 140 

InSb 0.235 0.32x10–3 170 

GaN-ZB 3.299 0.593x10–3 600 

AlN-ZB 4.9 0.593x10–3 600 

InN-ZB 1.94 0.245x10–3 624 

 

TABLE A.2 – Values of parameters F, EP, ΔSO, γ1, γ2, and VBO. Source [76]. 

Material F EP (eV) ΔSO (eV) γ1 γ2 VBO (eV) 

GaAs –1.94 28.8 0.341 6.98 2.06 –0.80 

AlAs –0.48 21.1 0.28 3.76 0.82 –1.33 

InAs –2.90 21.5 0.39 20.0 8.5 –0.59 

GaP –2.04 31.4 0.08 4.05 0.49 –1.27 

AlP –0.65 17.7 0.07 3.35 0.71 –1.74 

InP –1.31 20.7 0.108 5.08 1.60 –0.94 

GaSb –1.63 27.0 0.76 13.4 4.7 –0.03 

AlSb –0.56 18.7 0.676 5.18 1.19 –0.41 

InSb –0.23 23.3 0.81 34.8 15.5 0 

GaN-ZB –0.92 25.0 0.017 2.67 1.92 –2.64 

AlN-ZB 0.76 27.1 0.019 0.75 0.47 –3.44 

InN-ZB –0.92 25.0 0.006 1.10 0.85 -2.38 
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TABLE A.3 – Values of parameters C11, C12, C44, ac, av, b e alc. Sources [76, 78]. 

Material C11 (GPa) C12 (GPa) C44 (GPa) ac (eV) av (eV) b (eV) alc (Ǻ) 

GaAs 1187.9 537.6 600 –7.17 1.16 –1.7 5.6533 

AlAs 1250 534 542 –5.64 2.47 –2.3 5.66 

InAs 832.9 452.6 395.9 –5.08 1.0 –1.8 6.0584 

GaP 1405 620.3 703.3 –8.2 1.7 –1.6 5.45 

AlP 1330 630 615 –5.7 3.0 –1.5 5.47 

InP 1011 561 456 –6.0 0.6 –2.0 5.87 

GaSb 884.2 402.6 432.2 –7.5 0.8 –2.0 6.10 

AlSb 876.9 434.1 407.6 –4.5 1.4 –1.35 6.14 

InSb 684.7 373.5 311.1 –6.94 0.36 –2.0 6.48 

GaN-ZB 293 159 155 –2.2 5.2 –2.2 4.50 

AlN-ZB 304 160 193 –6.0 3.4 –1.9 4.38 

InN-ZB 187 125 86 –1.85 1.5 –1.2 4.98 

 

TABLE A.4 – Bowing values for ternary alloys. Source [76]. 

Material Eg ΔSO Ep F VBO alc 

AlxGa1–xAs –0.127+1.310x - - - - - 

InxGa1–xAs 0.477 0.15 –1.48 1.77 –0.38 2.61 

AlxIn1–xAs 0.70 0.15 –4.81 –4.44 –0.64 –1.4 

GaxIn1–xP 0.65 - - 0.78 - - 

AlxIn1–xP –0.48 –0.19 - - - - 

GaxIn1–xSb 0.415 0.1 - –6.84 - - 

AlxIn1–xSb 0.43 0.25 - - - - 

AlxGa1–xSb –0.044+1.22x 0.3 - - - - 

GaxAs1–xSb 1.43 0.6 - - –1.06 - 

InAs1–xSbx 0.67 1.2 - - - - 

AlAs1–xSbx 0.8 0.15 - - –1.71 - 

GaAs1–xPx 0.19 - - - - - 

InAs1–xPx 0.10 0.16 - - - - 

 

 



  

Appendix B – Solution of the Schrödinger equation for the 

infinite spherical potential well 

 

 

The infinite spherical potential well could be defined in spherical coordinates (r, θ, φ) 

as 
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It is well known from the studies of hydrogen atom that the wave function that 

describes the particle behavior can be separated in two different independent functions when 

it is in a potential with spherical symmetry: 

       ,R,,  rr , (B.9) 

where   ,  is the spherical harmonics function and R(r) is the radial function. Hence, the 

radial Schrödinger equation could be separated in angular and radial components: 
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where l is a quantum number (l = 0, 1, 2,...). The angular part is potential independent and 

does not interfere in the energy of the eigenstates. Hence, to obtain the energies we must solve 

the radial part of the Schrödinger equation: 
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Remembering that the potential is null inside the QD and introducing two variables, 

2

2



mE
k   and z = kr, the radial component of the Schrödinger equation can be written as 
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which is the spherical Bessel equation with the well-known solutions: 
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and 
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The functions yl(z) are irregular solutions because they are non-integrable in the 

interval containing z = 0, hence unphysical. It follows that the radial wave function R(r) is 

thus proportional to jl(kr) only. In order to satisfy the boundary condition at r = a, the value of 

k must be chosen such that ka corresponds to one of the zeros of the jl(z). If we denote the nth 

–zero of jl(z) as n

lz , then kazn

l   and the allowed energy levels are given by 

 

2
2

2 









a

z

m
E

n

ln

l


. (B.15) 

The zeros of the spherical Bessel function for 1 ≤ n ≤ 4 and 0 ≤ l ≤ 4 are shown in 

Table B.1. 

TABLE B.1: Some zeros of the spherical Bessel function jl. 

n

lz  n = 1 n = 2 n = 3 n = 4 

l = 0 3.141593 6.283185 9.424778 12.566371 

l = 1 4.493409 7.725252 10.904122 14.066194 

l = 2 5.763459 9.095011 12.322941 15.514603 

l = 3 6.987932 10.417119 13.698023 16.923621 

l = 4 8.182561 11.704907 15.039665 18.301256 
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