On the importance of atom probe tomography for the development of new nanoscale devices

Thales Borrely^{*} and Alain A. Quivy Insitute of Physics – University of São Paulo

Tao-Yu Huang, Yu-Chen Yang, and Rachel S. Goldman Materials Science & Engineering – University of Michigan

*email: thales.santos@usp.br

Overview

- Fairly rare: 100 systems worldwide (reported in 2020 [1]).
- Unique. Provides spatial distribution of all elements with subnanometer resolution.
- Expensive. Requires complex sample preparation.
- Extremely useful for developing nanostructured devices.

[1] B. Gault, A. Chiaramonti, O. Cojocaru-Mirédin, et al., "Atom probe tomography", Nat. Rev. Methods Primers 1:51, pp. 1–30, 2021.

Working principle

Field ion microscopy (FIM)

Time-of-flight secondary ion mass spectroscopy (ToF SIMS)

Shyam Katnagallu *et al* 2018 *J. Phys. D: Appl. Phys.* **51** 105601

Jan P. Hofmann et al, Phys. Chem. Chem. Phys., 2014,16, 5465-5474

Working principle

- Sample is a truncated cone.
- Sample is evaporated by pulsed laser or voltage pulses.
- Evaporated particles are accelerated and detected by a 2D position-sensitive ToF mass spectometer.
- Raw data: ~10⁷ particles identified by (x, y, t) and mass-to-charge ratio.
- Atom-by-atom reconstruction of sample. 4

Sample preparation – SEM/FIB

Analysis: InAs/GaAs quantum dots

Stranski-krastanov quantum dots SKQDs

Analysis: mass-to-charge ratio identification

Analysis: reconstructed image

2D contour plot

Nearest neighbor analysis: Existence of clusters

Radial distribution analysis: Composition distribution

Correlation function: Degree of clusterization

Isosurface - SKQD

10%

17%

20%

Isosurface – c(4×4) SMLQD

15%

Cluster analysis

Cluster parameters					
d-max (nm)	0.7				
Order (ions)	10				
N-min (ions)	200				
L (nm)	0.7				
d-erosion (nm)	0.4				

	In %	Extent x (nm)	Extent y (nm)	Extent z (nm)	Volume (nm ³)
Matrix	7.5	-	-	-	-
Cluster 1	17.9	6.1	3.0	2.5	189
Cluster 2	18.7	9.4	6.5	2.2	551
Cluster 3	17.7	4.0	4.5	2.0	155
Cluster 4	18.1	2.9	5.1	2.4	150
Cluster 5	18.3	3.6	3.9	2.2	130
Cluster 6	18.9	4.4	2.4	2.5	113
Cluster 7	18.3	2.9	3.7	1.8	81
Cluster 8	16.6	5.3	3.5	1.8	139
Cluster 9	18.0	2.8	4.3	2.6	130
Cluster 10	19.0	4.7	4.9	2.4	232
Cluster 11	17.2	6.7	4.5	2.1	262

c(4×4) SMLQD

Cluster analysis

Quantum well Thickness (nm)

Final remarks

The only technique that provides 3D compositional information with nano or sub nanometer resolution.

 \succ FIB/SEM to make a cone-shaped sample.

Sample is evaporated, collected, and reconstructed.

Analysis: stoichometry, cluster existence (nearest neighbor), concentration as a function of distance (radial distribution), degree of clusterization (correlation function), 3D shapes above a threshold concentraion (isosurface), cluster identification.

 \blacktriangleright APT as simulation input.

Understanding nanostrucutres and nanodevices.