*Email: thales.santos@usp.br

The Impurity Photovoltaic Effect in GaAs Solar Cells T. Borrely* and A. A. Quivy Institute of Physics, University of Sao Paulo, Rua do Matao 1371, 05508-090 Sao Paulo, SP, Brazil

1) Impurity photovoltaic effect

2) Method

 $lpha_n = f_t N_t \sigma_n^{opt}(\lambda)$ $lpha_p = (1-f_t) N_t \sigma_p^{opt}(\lambda) ~~{
m (III)}$

[1] A. Niemegeers, M. Burgelman, Numerical modelling of ac-characteristics of CdTe and CIS solar cells, 25th PVSC (1996) 901.

3) GaAs:Ti, GaAs:Fe, and GaAs:Cu

Concept: to take advantage of mid-gap energy levels created by deep-impurity doping;

3 deep-impurity-mediated processes for holes and electrons: thermal and optical emission, and thermal capture;

>Absorption of lower-energy photons \blacktriangleright current (J_{SC}) increase;

> Deep-impurity-mediated recombination \blacktriangleright voltage (V_{OC}) loss;

>Technical challenge: finding a compromise between J_{SC} enhancement and V_{OC} degradation.

Objective: to assess the viability of GaAs impurity solar cells (ISCs) by means of numerical simulations.

Method: numerical solution of a system composed of transport, continuity, and Poisson equations for carriers [1];

The impurity photovoltaic effect is included in the continuity equations using eq. (I), which describes all processes in Fig. 1;

➢ Total absorption (eq. II) is the sum of band-to-band, valence-bandto-impurity, and impurity-to-conduction-band processes.

The impurity-mediated absorption depends on the occupation probability of the impurity level f_{t} (eq. III).

 \succ The peak efficiency (Fig. occurs when the occupation probability is

Fig 2c ≻GaAs:Ti GaAs:Fe and perform poorly; GaAs:Cu may be more efficient than conventional solar cells (represented by dashed line).

4) Mapping

5) Conclusion

- ➢ GaAs:Cu impurity solar cells are promising; GaAs:Fe and GaAs:Ti are not (Fig. 2c);
- \triangleright Our results on GaAs: Ti ISCs are compatible with previously published experimental works [2].
- > We have shown that GaAs impurity solar cells may be substantially more efficient than their conventional counterparts (Fig. 4);
- \geq GaAs ISCs are especially useful when more infrared radiation is present (Fig 5).
- \succ Our results serve as a guideline for future experimental research on GaAs ISCs.

[2] P. G. Linares et al., Extreme voltage recovery in GaAs:Ti intermediate band solar cells, Sol. Energ. Mat. Sol. C. 108 (2013) 175.

Acknowledgments Acknowledgments This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior —Brasil (CAPES)—Finance Code 001 and by CNPq (grants 311687/2017-2 and 157446/2017-4). Acknowledgments