Escola de Verão IF-2015 Espectroscopia gama

Prof. José Roberto Brandão de Oliveira DFN-IFUSP

Aula 1: Introdução

- 1-Sobre meu grupo (y) no
 LAFN/IFUSP (muito breve)
- 2 Contextualização:
 - Interações fundamentais e modelo padrão
 - Física nuclear e estrutura nuclear
 - Espectroscopia gama

Espectroscopia y no IFUSP

- Pessoal: J.R.B.O., N.H.Medina, L.
 Gasques (profs); J. Alcántara-Núñez (Post-Doc); V. Zagatto, V. Aguiar, A.
 Souza, J. Duarte (pós graduação); ...
 Alunos de IC; Colaboradores: (IFUFF, IPEN, UNAL, LNS).
- Nosso espectrômetro γ (Saci Perere)
 Acelerador de partículas: Pelletron Tandem (8MV), LAFN – Laboratório Aberto de Física Nuclear
- Tópicos de pesquisa: Núcleos ímparímpar: bandas quirais, isômeros, testes do LSSM, mecanismos de reação com núcleos fracamente ligados e arco-íris nuclear

Interação eletromagnética

• Cargas elétricas (q) e campo eletromagnético (\vec{E}, \vec{B})

• Força de Lorentz $\vec{F} = q (\vec{E} + \vec{v} \times \vec{B})$

Equações de Maxwell

Formulation in terms of total charge and current ^[note 2]		
Name	Differential form	Integral form
Gauss's law	$ abla \cdot \mathbf{E} = rac{ ho}{arepsilon_0}$	$\oint \!$
Gauss's law for magnetism	$ abla \cdot {f B} = 0$	$\oint _{\partial V} \mathbf{B} \cdot \mathbf{dA} = 0$
Maxwell-Faraday equation (Faraday's law of induction)	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_{\partial S} \mathbf{E} \cdot \mathrm{d}\mathbf{l} = -\frac{\partial \Phi_{B,S}}{\partial t}$
Ampère's circuital law (with Maxwell's correction)	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial}{\partial}$	$\frac{\partial \mathbf{E}}{\partial t} \oint_{\partial S} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_S + \mu_0 \varepsilon_0 \frac{\partial \Phi_{E,S}}{\partial t}$

Ondas eletromagnéticas

• Eq. de onda no vácuo:
$$\nabla^2 E - \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2} = 0$$

$$\vec{E} = E_0 \hat{\epsilon} \cos(\vec{k} \cdot \vec{r} - \omega t + \delta)$$

• Espectro eletromagnético: • Fóton: $E_f = hf = \frac{hc}{\lambda}$

Eletrodinâmica quântica

Auto energia Fator g do elétron g_{exp}(e)=-2.002319304 36153(53)

• Espalhamento p-e

 $\alpha = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{\hbar c} = \frac{1}{137} \quad \alpha^2 \ll \alpha$

• Regras de Feynman (QED)

 $M_{fi} = (ie)^{2}\overline{u}(\vec{p}',s')\not\in'(\vec{k}\,',\lambda')^{*}\frac{\not\!p + \not\!k + m_{e}}{(p+k)^{2} - m_{e}^{2}}\not\in(\vec{k},\lambda)u(\vec{p},s) + (ie)^{2}\overline{u}(\vec{p}\,',s')\not\in(\vec{k},\lambda)\frac{\not\!p - \not\!k' + m_{e}}{(p-k')^{2} - m_{e}^{2}}\not\in'(\vec{k}\,',\lambda')^{*}u(\vec{p},s)$

Modelo Padrão

Partículas elementares e interações

Interação fraca

Decaimento beta

Ciclo p-p

produção de energia (e neutrinos) no sol

$$p+p \rightarrow {}^{2}H+\nu_{e}+e^{+}$$

Interação forte, CQD

Confinamento x liberdade assintótica

A força N-N

Potencial de Paris (parte central)

Outros termos da f.n.

Tensorial

 $C(r) \left\{ \frac{3(\vec{s}_1 \cdot \vec{r})(\vec{s}_2 \cdot \vec{r})}{r^2} - \vec{s}_1 \cdot \vec{s}_2 \right\}$

 $L D(r)\vec{l}.\vec{s}$

Spin-órbita

Física da Força Nuclear

• F.N.: Menos compreendida das interações

 Peculiarmente forte – não é tratável perturbativamente, em nível fundamental, como a eletro-fraca (exceto a energias muito altas)

 É muito complexa e consequentemente muito rica, particularmente a baixas energias

A escala do núcleo atômico · Constituído de núcleons (N): p & n (os bárions mais leves) Energia ralo 5 fm ~1 fm <<1 fm 0.5 nm 3 quarks (val.) partons núcleon Núcleo Átomo 16/27

Espalhamento Rutherford

Descoberta do núcleo atômico

• Rutherford, 1911

O conceito de seção de choque

 σ: Área de um alvo na qual a partícula do feixe precisa incidir para acontecer "algo"

Seção de choque coulombiana

Estrutura nuclear

- Peculiaridades interessantes (de baixa energia)
 - 1 É um sistema de muitos corpos (mas não tantos...
 como em matéria condensada: A < 300 << N_A=6×10²³)
 2 Aspectos coletivos e de partículas
 independentes
 - 3 Envolve a força nuclear (!)
 - 4 Envolve simetrias fundamentais e dinâmicas
 5 Pode fornecer informações além do modelo
 - padrão (decaimento duplo $-\beta$, por exemplo)
 - 6 É fundamental para astrofísica nuclear

Astrofísica nuclear

- Nucleossíntese primordial
- Ciclo pp (Sol)
- Ciclo CNO
- Processos r (supenova) e rp

Espectroscopia y

 O núcleo é muito pequeno para ser medido com instrumentos mecânicos ou elétricos

 A radiação gama é muito bem conhecida (QED)

 Permite acesso a propriedades dos estados e transições nucleares (esquema de níveis)

Experimento típico

Esquemas de níveis

Manifestam a estrutura nuclear

Próximas aulas

Estrutura nuclear - modelos nucleares
Espectroscopia gama - ferramentas
Técnica de coincidências
Perspectivas

A força N-N

Teoria mesônica Yukawa, 1935 Pion, 1947

$$\Delta t \Delta E \approx \hbar$$
$$\Delta E = mc^{2}$$
$$c \Delta t mc^{2} \approx \hbar c$$
$$\Delta R = c \Delta t \approx \frac{\hbar}{mc}$$

 $\hbar c \approx 200 \text{ MeV}. \text{fm}$ $m_{\pi} c^2 \approx 140 \text{ MeV}$

$$\Delta R \approx 1.4 \,\mathrm{fm}$$

Potencial de Paris
 (parte central)

2

Aula 2 – Modelos Nucleares

- Propriedades gerais de núcleos
- Modelo da gota líquida
- Mecânica quântica (em 1 slide:)
- Modelo de camadas
- Modelos coletivos
- Modelos de Nilsson e CSM
- Emparelhamento (senioridade)
- Altos spins Backbending
- Bandas quirais

Propriedades gerais dos núcleos

- Raio, densidade de carga e de núcleons
- Energias de ligação
- Energias de separação de 2n e 2p (números mágicos)

A distribuição de carga e massa do núcleo

Na região do vale de estabilidade

- Densidade aprox. constante
- Raio nuclear: $R = R_0 A^{\overline{3}} (R_0 = 1.2 \, \text{fm})$

Energias de ligação

Números mágicos

N: 2, 8, 20, 28, 50, 82, 126

Obs.: ao menos na região do vale de estabilidade:

Modelo da gota líquida

ò

Pairing

1

• Raio nuclear:
$$R = R_0 A^{\frac{1}{3}} (R_0 = 1.2 \,\mathrm{fm})$$

 $\rho_0 \approx 0.17 \,\mathrm{fm}^{-3}$
 $< r_{NN} > \approx 1/\sqrt[3]{\rho_0} = 1.8 \,\mathrm{fm}$

Fórmula semi-empírica de massa

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} - \delta(A,Z)$$

Coulomb

Asymmetry

Surface

Volume

2

Mecânica quântica (em 1 slide!)

Ex.: Orbitais atômicos $(V \propto \frac{1}{r})$

m = 2

• Função de onda $\Psi(r,\theta,\phi) = R_n(r) Y_{lm}(\theta,\phi)$ Y_{lm} : Harmônicos esféricos Estados de momento angular I = 1m = 0

m.a. orb.
$$z$$

proj. z m

 $-l \le m \le l$ 2*l*+1 estados

ex.: l=2:m=-2,-1,0,1,2

 $\operatorname{Re}(\Psi)$: + – n=1 n=5 n=6 n=4 n=7 0 0 m = 0l=1m = 0l = 1m = 1l = 2m = 0l = 2m = 1l = 2

Distribuição de matéria $|\Psi_{2,2}|^2$

Modelo de Camadas

• Oscilador harmônico 3D $E^*(n) = (n+3/2)\hbar\omega$

Modelo de Camadas

Modelo de camadas realístico

Modelo de camadas de larga escala (LSSM)

 M.C. com interação residual realística entre as partículas de valência (exs.: KB3, SDPF...)

Ex. ⁴⁶Ti: Caroço: ⁴⁰Ca (N=Z=20) PhysRevC70 034302

LSSM probabilidades de transição

Modelos coletivos

Modelo Vibracional

• Vibrações da superfície nuclear

Modelo rotacional

 Rotação de núcleo quadrupolar por eixo perpendicular ao de simetria (coletiva)

Rotacional ou vibracional?

Modelo de Nilsson

Estados de partícula única em um potencial deformado

Emparelhamento

 Tendência ao acoplamento de órbitas com reversão temporal → J=0

Correlações de emparelhamento (além do campo médio). O núcleo é análogo a um supercondutor.

Modelo de "Cranking" (CSM)

- Mod. Nilsson + interação de Coriolis
- Routhiano $e' = e \omega J_x$

Energia no referencial intrínseco (não inercial) com velocidade angular de rotação constante

Altos spins - "Backbending"

• Quebra de par induzida por Coriolis

LSSM × Collective rotation

 Comportamento rotacional construído no MC com interações residuais

Modelo de Strutinsky

Gota líquida + correções de camada TRS Total Routhian Surfaces

Exemplo de estudo no IF

 J.A.Alcántara-Núñez, Tese de Doutorado, IFUSP, 2003

Espectrômetro Saci Perere - Acelerador Pelletron

24/33

Quebra de simetria quiral

Ab Initio – NCSM

- NCSM No Core Shell Model
- Teorias de campo efetivo (xEFT)
- Uso de parâmetros da interação NN, NNN ajustados a dados de sistemas de poucos corpos

ntse-2014 (Nuclear Theory in the Supercomputing Era), Russia ^{26/33}

Cálculos teóricos de precisão

27/33

Próxima aula: Ferramentas de pesquisa

- Aceleradores de partículas
- Detectores de partículas
- Espectrômetros gama

Terminação de banda

Alinhamento de todas as partículas de valência

Coletividade além da terminação

• Destaque PRL 2007

E.S. Paul *et al.*, Phys. Rev. Lett. 98, 012501 (2007)

Simetria e transições de fase

IBM: s, d – bósons
Simetrias dinâmicas

Ex. X(5) ponto crítico da transição de fase rotorvibrador

Novos números mágicos?

Modificação das camadas longe do vale de estabilidade

Nupecc LRP 2004

Aula 2 – Modelos Nucleares

- Propriedades gerais de núcleos
- Modelo da gota líquida
- Mecânica quântica (em 1 slide:)
- Modelo de camadas
- Modelos coletivos
- Modelos de Nilsson e CSM
- Emparelhamento (senioridade)
- Altos spins Backbending
- Bandas quirais

Propriedades gerais dos núcleos

- Raio, densidade de carga e de núcleons
- Energias de ligação
- Energias de separação de 2n e 2p (números mágicos)

2/33

Modelo de Camadas				
• Osc	ilador I	harmônio	co 3D	$E^*(n) = (n+3/2)\hbar\omega$
Cam	po médio	Partícula independe degen.	Poço pote nte Para	b de Ucupação encial 112 bólico 40 20 8 2 $\hbar \omega$
<i>n</i>	1	(<i>n</i> +1)(<i>n</i> +2)	N 2	
1	1	6	8 🗸	
2	0, 2	12	20 🖌	Números mágicos / /
3	1, 3	20	40 🖌 🣍	
4	0, 2, 4	30	70 ×	9/33
5	1, 3, 5	42	112 🗙	

Modelo de "Cranking" (CSM)

• Mod. Nilsson + interação de Coriolis

• Routhiano $e' = e - \omega J_x$

Energia no referencial intrínseco (não inercial) com velocidade angular de rotação constante

Quebra de simetria quiral

Ab Initio – NCSM

- NCSM No Core Shell Model
- Teorias de campo efetivo (XEFT)
- Uso de parâmetros da interação NN, NNN ajustados a dados de sistemas de poucos corpos

(Nuclear Theory in the Supercomputing Era), Russia ^{26/33}

Cálculos teóricos de precisão

Próxima aula: Ferramentas de pesquisa

- Aceleradores de partículas
- Detectores de partículas
- Espectrômetros gama

28/33

Ferramentas de pesquisa

- Breve re-introdução
- Reações nucleares
- Aceleradores de Partículas
- Detectores de Radiação
- O Supressor Compton
- Eletrônica e aquisição de dados
- Sistema ancilar (Saci)
- Espectrômetros gama

Investigação da estrutura nuclear

Espectroscopia gama. Ex. reação de fusão-evaporação

Colisões iônicas de baixa energia

- Bem abaixo da energia da barreira Coulombiana → somente espalhamento elástico (tipo Rutherford)
- Não há reação não produz raios-y

Reações Nucleares

 Para energias acima da barreira (ou próximas, devido ao tunelamento) há envolvimento da força nuclear

Acelerador Pelletron Tandem &UD

Esquema do acelerador Pelletron

Partes do Acel. Pelletron

Acelerador linear

Ressoador

Pelletron-LINAC (LAFN-IFUSP)

Produção de feixes radioativos

- Ribras Pelletron (IFUSP)
- · Solenóides supercondutores (6T)

Detectores e aquisição de dados

Detectores de radiação

GM

· Detectores a gás Amplitude

Cathode

Freamento de íons em sólidos

Detectores Semicondutores

Detector de Si

Diodo, sob polarização reversa

Interação da radiação y com a matéria

O cristal cintilador de NaI(Tl)

NaI(Tl)

Iodeto de Sódio dopado com Tálio **Gap:** ≈ 7 eV **Energia média por fóton:** 3 eV **Produção de luz:** 38 fótons por keV (26 eV/fóton) (Aprox. 1 fóton por par partícula-buraco) Transparente para a própria cintilação

O tubo fotomultimpicador

Base, para alimentação clo tubo fotomultiplicaclor: 77

Detector semicondutor de GeHP

Cristais de Ge Hiperpuro

Alta tensão (2-5 kV)

Botijão de N₂ Líq. T=77K

Resolução em energia 2-3keV Resolução em tempo ~20 ns

Espectros gama

O Supressor Compton

 Veto de eventos que interagem com o filtro cintilador

Eletrônica modular

Eletrônica de coincidências

Sistema ancilar do espectrômetro

Sistema de detecção de partículas carregadas

SACI – sistema ancilar de cintiladores plásticos

Espectrômetros

Sistemas multidetectores de GeHP/AC
GASP - LNL
GAMMASPHERE LBL/ANL
GeHP
100 GeHP

Espectrômetros

Sistemas multidetectores de GeHP/AC
GASP - LNL
GAMMASPHERE LBL/ANL
GeHP
100 GeHP

Próxima aula

- Técnica de coincidências
- Exemplos
- Técnica do Rastreamento (Tracking)
- Outras técnicas de medida de espectroscopia gama (vidas médias)

28/33

Aceleradores eletrostáticos

Van de Graaf

IFUSP anos 50

Sistema de carga

Ciclotron

Microtron

Acelerador de elétrons (2-32 MeV)

Sincrotron

• LNLS - Campinas, SP

LHC - CERN

Ferramentas de pesquisa

- Breve re-introdução
- Reações nucleares
- Aceleradores de Partículas
- Detectores de Radiação
- O Supressor Compton
- Eletrônica e aquisição de dados
- Sistema ancilar (Saci)
- Espectrômetros gama

1/33

Sistema ancilar do espectrômetro

• Sistema de detecção de partículas carregadas

SACI – sistema ancilar de cintiladores plásticos

Próxima aula

- Técnica de coincidências
- Exemplos
- Técnica do Rastreamento (Tracking)
- Outras técnicas de medida de espectroscopia gama (vidas médias)

27/33

Aceleradores eletrostáticos

29/33

<section-header>

Aula 4 – técnica de coincidências

- Utilidade do método
- Coincidências (γ-γ; γ-ρ)
- γ-p Medida de reações nucleares
- Rastreamento y (Tracking)
- Outras técnicas de medida de espectroscopia γ (distr. Angulares, vidas médias,...)
- Poder de resolução dos espectrômetros 1/40

Taxa típica de reação (fusão)

- Cálculo da taxa de reações R=Ino
- Valores típicos:
 - I= 1 pnA = 0.6×1010 part./s;
 - n= 6x10¹⁸ átomos/cm² (1mg/cm², A=100)
 - $\sigma = 1 b = 10^{-23} \text{ cm}^2$
 - → R=3.6×10⁵ reações/s
- Intervalo médio <t> entre reações 1/R:
 <t>=3×10⁻⁶ s (3μs) como identificar de que reação veio um raio y?

feixe

alvo

Correlação temporal

- Vidas médias de estados nucleares
 excitados em geral variam de 0.01 ps a 100ns
 muito menores que 3 μs = 3000 ns.
- Resolução temporal de detectores de Ge é cerca de 20 ns nesta escala transições em cascata são praticamente simultâneas <u>coincidentes</u>.
- Se dois raios y são detectados dentro de 50-100 ns, provavelmente vem da mesma cascata.
- Processos nucleares são ainda mais rápidos, (ex. Evaporação de p, n < 10⁻¹⁹ s)

Circuito de coincidências

Espectro de tempo

Diferença de tempo entre dois detectores

Matiz de coincidências y-y

Espectro bi-paramétrico E₁ x E₂

Janelas x Esquema de níveis

7/40

Exemplo- Janelas x Esquema de níveis

Nosso espectrômetro (IFUSP-DFN)

- Sistema Ancilar de Cintiladores (Saci)
- Pequeno Espectrômetro de Radiação
 Eletromagnética com Rejeição de Espalhamento

 $\gamma - p ({}^{16}O + {}^{27}A |)$

Espectrômetro y típico

PRISMA-CLARA LNL-INFN

Por que tão complexo?

Compexidade do espectro y Ex.: Reação de Fusão-evaporação

O Conceito de poder de resolução

- A razão P/B melhora a cada seleção (janela) feita
- O fator de melhora é o poder de resolução $R = \frac{SE_{\gamma}}{\Delta E_{\gamma}} P/T$
- SE_{γ} É a separação média entre picos y em uma cascata ΔE_{γ} É a resolução em energia

P/TÉ a razão pico/total do detector

13/40

Multiple y coincidences

O Rastreamento y (tracking)

 Determinação da posição e da energia das interações y em 3 dimensões

Determinação sequência
 de espalhamentos y

Espectrômetros em construção

Gretina (EUA); Agata (UE)

Eletrônica (GRETINA)

Digitizer module (LBNL)

14bit, 100 MHz Energy Pole/zero correction Leading edge time Constant fraction time Pulse shape

Trigger Timing & Control module (ANL)

Fast trigger <250 nsec Trigger decision time <20 µsec Trigger conditions Multiplicity Sum energy Hit pattern

Evolução do poder de resolução

y-p para medida de reação

Adaptação do Saci para medidas de reações

- Colimadores $\Delta\Omega(\theta)$ ($\Delta\theta \leq 10^{\circ}$; limitação da taxa)
- Furos de 0.5-3.5 mm (placas de Al)
- 11 angulos (30, 40, 50, 60, 70, 80, 100, 120, 130, 140)

Bases ativas nas PMT's (taxas até 100 kHz cada)

y - p ("Li+122Sn)

Banana de a's

y-p Resultados recentes

V.B. Zagatto (MS, IFUSP) Nucl. Inst. Meth. A 749 (2014) 19

V.B. Zagatto (DR) "Li+120Sn @ 24MeV

SISMEI

Sistema de medidas de estados isoméricos

D.L. Toufen (Mestrado IFUSP)

SISMEI (Isomers)

Paula R. P. Allegro, PhD IFUSP 2013

Próxima aula - Perspectivas

- NO IFUSP
- Colaborações internacionais
- Núcleos exóticos (Feixes Radioativos)
- Momentos angulares extremos
- Superpesados
- Astrofísica nuclear (Baixa energia)
- Hipernúcleos

Detectores y segmentados

y-ray tracking

"História" da detecção de um raio gama
Identificação de eventos

Espectrômetros de tracking

Espectrômetros:

AGATA (UE);

GRETA (EUA)

Distance between faces of crystals: in same cluster ~3 mm in adjacent clusters ~9 mm Total weight of the 60 clusters of the AGATA-180 configuration ~2.5 tons Mounted on a self-supporting structure

Outras técnicas de medidas de espectroscopia gama

- Distribuições angulares (momento angular das transições)
- Vidas-médias (probabilidades de transição)
- Fatores giromagnéticos (configuração dos estados)
- Etc.

Distribuições angulares

Polarização gama

Medida do caráter magnético ou elétrico da transição

Medida de vidas médias

- Técnicas mais utilizadas:
- Relógio (> 1s)
- TAC/TDC (10ns 1s)
- Plunger (1ps-10ns)
- DSAM (10fs-1ps)

Curva de decaimento

Meia vida x vida média

$$A = A_0 2^{-\frac{t}{t_{1/2}}}$$

$$t_{1/2} = \tau \ln 2$$

TAC/TDC

SISMEI (RSM)

Plunger

DSAM

Correlação angular p-y

Como o ¹²³Sb (= ¹²²Sn+1p) é produzido?

b) Fusão completa seguida de evaporação de 1α + 2n

Aula 4 – técnica de coincidências

- Utilidade do método
- Coincidências (γ-γ; γ-p)
- γ-p Medida de reações nucleares
- Rastreamento y (Tracking)
- Outras técnicas de medida de espectroscopia y (distr. Angulares, vidas médias,...)
- Poder de resolução dos espectrômetros

1/40 (23)

Correlação temporal

- Vidas médias de estados nucleares excitados em geral variam de 0.01 ps a 100ns
 muito menores que 3 µs = 3000 ns.
- Resolução temporal de detectores de Ge é cerca de 20 ns - nesta escala transições em cascata são praticamente simultâneas -*coincidentes*.
- Se dois raios y são detectados dentro de 50-100 ns, provavelmente vem da mesma cascata.
- Processos nucleares são ainda mais rápidos, (ex. Evaporação de p, n < 10⁻¹⁹ s)

Nosso espectrômetro (IFUSP-DFN)

- Sistema Ancilar de Cintiladores (Saci)
- Pequeno Espectrômetro de Radiação
 Eletromagnética com Rejeição de Espalhamento

4 GeHP c/ AC 11 <u>E</u>-E (*phoswich*)

Espectrômetro y típico

PRISMA-CLARA LNL-INFN

Por que tão complexo?

11/40

Espectrômetros em construção

• Gretina (EVA); Agata (VE)

16/40

Eletrônica (GRETINA)

Digitizer module (LBNL) 14bit, 100 MHz Energy Pole/zero correction Leading edge time Constant fraction time Pulse shape

Trigger Timing & Control module (ANL)

Fast trigger <250 nsec Trigger decision time <20 µsec Trigger conditions Multiplicity Sum energy Hit pattern

17/40

Próxima aula - Perspectivas

- NO IFUSP
- Colaborações internacionais
- Núcleos exóticos (Feixes Radioativos)
- Momentos angulares extremos
- Superpesados
- Astrofísica nuclear (Baixa energia)
- Hipernúcleos

26/40

Medida de vidas médias

Técnicas mais utilizadas:

- Relógio (> 1s)
- TAC/TDC (10ns 1s)
- Plunger (1ps-10ns)
- DSAM (10fs-1ps)

34/40

Aula 5 - Perspectivas

- NO IFUSP
- Colaboração com LNS (arco-íris, NUMEN)
- Núcleos exóticos (Feixes Radioativos)
- Momentos angulares extremos
- Superpesados
- Astrofísica nuclear (Baixa energia)
- · Hipernúcleos

RIBRAS (Pelletron-IFUSP)

Solenóides supercondutores (6T)

-Feixes fracamente ligados -Espalhamento elástico -Reações diretas

Feixes radioativos

Reação	feixe secundário	(part/s)
⁹ Be(7Li, ⁸ Li)	8Li	106
9Be(7Li,6He)	6He	104
1H(10B,7Be)	⁷ Be	104
12C(3He,7Be)	⁷ Be	104
³ He(⁶ Li,n) ⁸ B	8B	105
12C(17O,18mF)	18F	10 ³

Uso do RIBRAS para espectroscopia y

- Precisa blindagem de água borada para proteger GeHPs
- Substituir PMTs por SiPMs 4 x 4 Pixels
 (3x3mm² ~10³ APDs/mm²) devido ao campo magnético
 - B (RIBRAS: ~6 T)
- Testes planejados:
 - ⁶He+¹²⁰Sn (transferência de 2n)

Nosso espectrômetro (IFUSP-DFN)

- Sistema Ancilar de Cintiladores (Saci)
- Pequeno Espectrômetro de Radiação
 Eletromagnética com Rejeição de Espalhamento

Reações de interesse a-f - IFUSP

Medidas no acelerador Pelletron do IF

L.Gasques, J.R.B.O. - $^{16}O+^{16}O$, esp. y

Fator Astrofísico

Espectroscopia y e mecanismos de reações

- Espalhamento inelástico
- Transferência inelástica
- Fusão completa e incompleta
- Transf. Múltiplas, DIC
- Quebra inelástica

Futuro sistema 47 de partículas carregadas

Alta granularidade para coincidências cinemáticas

Medida de fator g por CMT

Colaborações com LNS/INFN

- Sepectrômetro MAGNEX Catania (Sicilia)
- Arco-íris nuclear
- NUMEN (duplo decaimento beta)
- Projeto de novo espectrômetro gama

Arco-íris nuclear - MAGNEX

Proposta IFUSP – Experimento Catania LNS

- J R B Oliveira et al. J. Phys. G 40 105101 (2013)

Arco-íris nuclear

OBS.: Dados Pelletron 10B+27Al 22-42 MeV - aluno de mestrado 11/39

NUMEN

- Projeto em colaboração USP/UFF/LNS-INFN
- MAGNEX + espectrômetro gama
- Física do duplo decaimento beta
- Elementos de matriz de transição nuclear de dupla troca de carga

y-Numen

Acoplamento de um espectrômetro y ao MAGNEX

Duplo decaimento beta

- Decaimento muito raro $T_{1/2} = 10^{20} 10^{24}$ anos
- Modelo Padrão: v≠v, m_v=0 decaimento duplo beta ocorre sempre com emissão de 2 neutrinos (no caso de β*β*) ou 2 anti-neutrinos (caso β·β·)
- Se $v = \overline{v}$ (neutrino de Majorana), duplo beta pode acontecer sem emissão de v

Reação de troca de carga SCE

 Troca de um píon ou outro méson carregado entre dois núcleos

Reação de dupla troca de carga DCE

- Troca de dois mésons carregados entre os núcleos;
- Semelhante ao duplo-decaimento beta sem v DCE
- Elementos de matriz M são proporcionais

$$^{40}\text{Ca} + ^{18}\text{O} \rightarrow ^{40}\text{Ar} + ^{18}\text{Ne}$$

$${}^{40}\text{Ca} \rightarrow {}^{40}\text{Ar} + \beta^{+} + \beta^{+} (+\nu + \nu)$$

Espectro de energia de excitação

INE detectado no MAGNEX ao redor de o°

Espectros previstos para ¹⁵⁴Sm

Perspectivas

1.- Fronteira extensiva:

- Feixes radioativos de alta intensidade (SPES, FAIR, SPIRAL2...): razões N/Z extremas
- Baixíssimas energias (Astrofísica nuclear)
- Elementos superpesados (SHE): A extremo
- Hipernúcleos: Nova dimensão: S (Panda)
- Altos spins J(y-tracking)

FAIR

- Facility for Antiproton and Ion Research
- Feixes Radioativos de alta intensidade

• HISPEC/DESPEC NUSTAR

Terra Incognita

Momentos angulares extremos

Formas nucleares e fenômenos associados

Perspectivas

- 2. Fronteira da precisão
- Testes do "Ab Initio NCSM"
 e extensões (teoria)
- BB- sensibilidade além do
 Modelo Padrão
- Medidas precisas de propriedades nucleares em casos críticos, e sistemáticas

Obrigado pela atenção:

Terra Incognita

Evolução da estrutura de camadas

Novos nºs. mágicos

Força tensorial

Previsões de "quebras" do MC

Elementos Superpesados (SHE)

 Primeira medida de espectroscopia gama de um SHE – J. Rubert et al. 2012 @ Jyvaskyla (~20 dias de experimento)

Astrofísica

Reações a energias muito baixas

 $\Lambda\Lambda - Produção$

PANDA @ FAIR

Figure 4.2: Integration of the secondary target and the germanium Cluster-array in the $\overline{P}ANDA$ detector, with the beam entering from left.

32/39

Alicia Sanchez-Lorente PhD Thesis2010

Introduction

Double beta decay

Núcleos halo

- Halos de nêutrons
- Superfície nuclear difusa
- Proximidade com o continuum (drip line)
- Borromeanos

Núcleos Superpesados

Previsão

SHE (superpesados) produzidos

Produção dos SHE

- Fusão "fria" e "quente" (48Ca+248Bk, t_{1/2}=320d)
- Feixes Radioativos, novos aceleradores

Importância dos SHE

- F.Nuc. Estrutura e propriedades de decaimento dos Superpesados; Novas camadas.
- Atrof. SHE na natureza?
- Q. Propriedades químicas
- F. At. Estrutura eletrônica

⁶He+¹²⁰Sn (RIBRAS)

PHYSICAL REVIEW C 82, 034602 (2010)

FIG. 2. (Color online) Energy spectra (left) and the corresponding angular distributions (right) of the α particles produced in the reaction ${}^{6}\text{He} + {}^{120}\text{Sn}$. The histogram (left) and the filled circles (right) are the experimental data. The dotted Gaussian stands for the Q window for the 2n transfer process, arbitrarily normalized. The solid line corresponds to the two-neutron distorted-wave Born approximation (DWBA) transfer calculation without any normalization. The dashed line corresponds to the breakup calculation without any normalization and the dot-dashed stands for the fusion-evaporation Projection Angular-momentum Coupled Evaporation (PACE) calculation arbitrarily normalized. The thin solid line plotted at E = 19.8 MeV (left) is the 1*n* DWBA calculation, multiplied by a factor of 4 to make the curve more visible.

Aula 5 - Perspectivas

- NO IFUSP
- Colaboração com LNS (arco-íris, NUMEN)
- Núcleos exóticos (Feixes Radioativos)
- Momentos angulares extremos
- Superpesados
- Astrofísica nuclear (Baixa energia)
- Hipernúcleos

Nosso espectrômetro (IFUSP-DFN)

- Sistema Ancilar de Cintiladores (Saci)
- Pequeno Espectrômetro de Radiação
 Eletromagnética com Rejeição de Espalhamento

4 GeHP c/ AC 11 $\Delta E = E$ (phoswich)

Colaborações com LNS/INFN

- Espectrômetro MAGNEX Catania (Sicilia)
- Arco-íris nuclear
- NUMEN (duplo decaimento beta)
- Projeto de novo espectrômetro gama

NUMEN

- Projeto em colaboração USP/UFF/LNS-INFN
- MAGNEX + espectrômetro gama
- Física do duplo decaimento beta
- Elementos de matriz de transição nuclear de dupla troca de carga

y-Numen

Acoplamento de um espectrômetro y ao MAGNEX

13

Perspectivas

1.- Fronteira extensiva:

- Feixes radioativos de alta intensidade (SPES, FAIR, SPIRAL2...): razões N/Z extremas
- Baixíssimas energias (Astrofísica nuclear)
- · Elementos superpesados (SHE): A extremo
- Hipernúcleos: Nova dimensão: S (Panda)
- Altos spins J (y-tracking)

Momentos angulares extremos

• Formas nucleares e fenômenos associados

Perspectivas

2. Fronteira da precisão

- Testes do "Ab Initio NCSM"
 e extensões (teoria)
- ββ- sensibilidade além do
 Modelo Padrão
- Medidas precisas de propriedades nucleares em casos críticos, e sistemáticas

Extras	
26/39	

Importância dos SHE

- F.Nuc. Estrutura e propriedades de decaimento dos Superpesados; Novas camadas.
- Atrof. SHE na natureza?
- Q. Propriedades químicas
- F. At. Estrutura eletrônica

