Journal Club do DFMT com Rafael Magaldi

Data do Evento: 
15/08/2018 - 12:00 até 14:00

Journal Club do Departamento de Física dos Materiais e Mecânica – FMT

Nesta semana o pós-graduando Rafael Miksian Magaldi, do Grupo Teórico de Materiais do FMT, apresentará o artigo : “Machine Learning Topological Invariants with Neural Networks”, Pengfei Zhang et al.

Dia: 15 de agosto, quarta-feira, às 12h10

Local: Sala de Seminários José Roberto Leite, Edifício Alessandro Volta (bloco C).


In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.

Data de Término: 
15/08/2018 - 12:00