Estudo fornece ferramenta matemática para a compreensão do padrão fractal do plasma de quarks e glúons

Estudo fornece ferramenta matemática para a compreensão do padrão fractal do plasma de quarks e glúonsO plasma de quarks e glúons (QGP, do inglês quark-gluon plasma) é um estado da matéria que se manifesta em temperaturas e densidades muito altas, como aquelas que ocorrem nas colisões de hádrons (prótons, nêutrons e mésons).
Por: Revista Agência FAPESP. Acesse aqui a matéria original.


Em condições ditas “normais”, os quarks e glúons estão sempre confinados nas estruturas que constituem os hádrons. Porém, quando os hádrons são acelerados até velocidades relativísticas e levados a se colidir uns com os outros, como ocorre nos experimentos realizados no LHC (Large Hadron Collider, o Grande Colisor de Hádrons do Cern, a Organização Europeia para a Pesquisa Nuclear), o confinamento é interrompido e os quarks e glúons se espalham, formando um plasma. O fenômeno dura apenas uma ínfima fração de segundo, mas sua observação tem proporcionado descobertas extremamente importantes sobre a natureza da realidade material.
 
Uma dessas descobertas, a respeito da qual se acumulam evidências cada vez maiores, é a de que o plasma de quarks e glúons possui uma estrutura fractal. Quando ele se desintegra, formando um jorro de partículas que se propagam em várias direções, o comportamento das partículas que compõem os jatos é similar ao comportamento dos quarks e glúons que constituem o plasma. E o decaimento prossegue, por meio de uma cascata de reações, que revela um padrão de autossemelhança por escala típico dos fractais.
 
Um novo estudo, publicado no The European Physical Journal Plus, fornece uma ferramenta matemática para a compreensão do fenômeno. O artigo aborda um aspecto técnico da solução da Equação de Klein-Gordon, que descreve a dinâmica dos bósons – partículas relativísticas com spin inteiro que compartilham os mesmos estados quânticos, tornando-se, portanto, indistinguíveis. Na chamada “condensação de Bose-Einstein”, as partículas comportam-se coletivamente como se fossem uma única partícula. Saiba mais...

Imagem: Cascata de eventos provocada pela colisão de íons de chumbo, registrada pelo detector CMS do LHC em novembro de 2018 (imagem: CMS/Cern)

 

Desenvolvido por IFUSP