Journal Club do Departamento de Física dos Materiais e Mecânica

http://www.fmt.if.usp.br/~jclubfmt/journal/Home/Home_files/shapeimage_1.png

http://www.fmt.if.usp.br/~jclubfmt/journal/Home/Home_files/if_nova_logo.png

Home      Help        About       Archive

 

xxxx

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

BIOCOMPUTING BASED ON PARTICLE DISASSEMBLY.

ADAMOR L E VIRGINO

Tuesday, June 16, 2015

Nanoparticles with biocomputing capabilities could potentially be used to create sophisticated robotic devices with a variety of biomedical applications, including intelligent sensors and theranostic agents. DNA/RNA-based computing techniques have already been developed that can offer a complete set of Boolean logic functions and have been used, for example, to analyse cells and deliver molecular payloads. However, the computing potential of particle-based systems remains relatively unexplored. Here, we show that almost any type of nanoparticle or microparticle can be transformed into autonomous biocomputing structures that are capable of implementing a functionally complete set of Boolean logic gates (YES, NOT, AND and OR) and binding to a target as result of a computation. The logic-gating functionality is incorporated into self-assembled particle/biomolecule interfaces (demonstrated here with proteins) and the logic gating is achieved through input-induced disassembly of the structures. To illustrate the capabilities of the approach, we show that the structures can be used for logic-gated cell targeting and advanced immunoassays.

M. P. Nikitin et al., Nature Nanotechnology 9, 716 (2014). 

 

Desenvolvido por IFUSP