Papers
, “Influence of stability islands in the recurrence of particles in a static oval billiard with holes”, Physics Letters A, vol. 380, no. 43, pp. 3634 - 3639, 2016.
, “The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps”, Physics Letters A, vol. 380, no. 18-19, pp. 1610 - 1614, 2016.
, “Explaining a changeover from normal to super diffusion in time-dependent billiards”, EPL (Europhysics Letters), vol. 121, no. 6, p. 60003, 2018. (1.11 MB)
 (1.11 MB)
 (1.11 MB)
 (1.11 MB), “Extreming curves and the parameter space of a generalized Logistic mapping”, Journal of Vibration Testing and System Dynamics, vol. 2, no. 2, pp. 109 - 118, 2018.
, “Statistical properties for an open oval billiard: An investigation of the escaping basins”, Chaos, Solitons & Fractals, vol. 106, pp. 355 - 362, 2018. (7.99 MB)
 (7.99 MB)
 (7.99 MB)
 (7.99 MB), “Dynamical thermalization in time-dependent billiards”, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 29, no. 10, p. 103122, 2019. (2.77 MB)
 (2.77 MB)
 (2.77 MB)
 (2.77 MB), “Parametric perturbation in a model that describes the neuronal membrane potential”, Physica A: Statistical Mechanics and its Applications, vol. 515, pp. 519 - 525, 2019. (1.19 MB)
 (1.19 MB)
 (1.19 MB)
 (1.19 MB), “Influence of Delayed Conductance on Neuronal Synchronization”, Frontiers in Physiology, vol. 11, p. 1053, 2020. (947.18 KB)
 (947.18 KB)
 (947.18 KB)
 (947.18 KB), “Emergence of Neuronal Synchronisation in Coupled Areas”, Frontiers in Computational Neuroscience, vol. 15, p. 663408, 2021. (4.72 MB)
 (4.72 MB)
 (4.72 MB)
 (4.72 MB), “Phase synchronization in a sparse network of randomly connected neurons under the effect of Poissonian spike inputs”, Chaos: An Interdisciplinary Journal of Nonlinear Science, no. 12, 2023. (101.72 KB)
 (101.72 KB)
 (101.72 KB)
 (101.72 KB), “Analysis of invariant spanning curves in oval billiards: A numerical approach based on Slater’s theorem”, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 35, no. 3, 2025. (12.24 MB)
 (12.24 MB)
 (12.24 MB)
 (12.24 MB), “A recursive method to find the extreme and superstable curves in the parameter space of dissipative one-dimensional mappings”, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 35, no. 2, 2025. (4.11 MB)
 (4.11 MB)
 (4.11 MB)
 (4.11 MB)